
Praise for A Practical Guide to Red Hat Linux,

Second Edition

“Since I’m in an educational environment, I found the content of Sobell’s
book to be right on target and very helpful for anyone managing Linux
in the enterprise. His style of writing is very clear. He builds up to the
chapter exercises, which I find to be relevant to real-world scenarios a
user or admin would encounter. An IT/IS student would find this book a
valuable complement to their education. The vast amount of informa-
tion is extremely well balanced and Sobell manages to present the con-
tent without complicated asides and meandering prose. This is a ‘must
have’ for anyone managing Linux systems in a networked environment
or anyone running a Linux server. I would also highly recommend it to
an experienced computer user who is moving to the Linux platform.”

—Mary Norbury
IT Director
Barbara Davis Center/
University of Colorado at Denver
from a review posted on slashdot.org

“I had the chance to use your UNIX books when I when was in college
years ago at Cal Poly San Luis Obispo, CA. I have to say that your
books are among the best! They’re quality books that teach the theo-
retical aspects and applications of the operating system.”

—Benton Chan
IS Engineer

“The book has more than lived up to my expectations from the many
reviews I read, even though it targets FC2. I have found something very
rare with your book: It doesn’t read like the standard technical text, it
reads more like a story. It’s a pleasure to read and hard to put down.
Did I say that?! :-)”

—David Hopkins
Business Process Architect

“Thanks for your work and for the book you wrote. There are really few
books that can help people to become more efficient administrators of
different workstations. We hope (in Russia) that you will continue
bringing us a new level of understanding of Linux/UNIX systems.”

—Anton Petukhov

® ®

“Mark Sobell has written a book as approachable as it is authoritative.”

—Jeffrey Bianchine
Advocate, Author, Journalist

“Excellent reference book, well suited for the sysadmin of a Linux clus-
ter, or the owner of a PC contemplating installing a recent stable Linux.
Don’t be put off by the daunting heft of the book. Sobell has striven to
be as inclusive as possible, in trying to anticipate your system adminis-
tration needs.”

—Wes Boudville
Inventor

“A Practical Guide to Red Hat® Linux® is a brilliant book. Thank you
Mark Sobell.”

—C. Pozrikidis
University of California at San Diego

“This book presents the best overview of the Linux operating system that
I have found. . . . [It] should be very helpful and understandable no mat-
ter what the reader’s background is: traditional UNIX user, new Linux
devotee, or even Windows user. Each topic is presented in a clear, com-
plete fashion and very few assumptions are made about what the reader
knows. . . . The book is extremely useful as a reference, as it contains a
70-page glossary of terms and is very well indexed. It is organized in
such a way that the reader can focus on simple tasks without having to
wade through more advanced topics until they are ready.”

—Cam Marshall
Marshall Information Service LLC
Member of Front Range UNIX
Users Group [FRUUG]
Boulder, Colorado

“Conclusively, this is THE book to get if you are a new Linux user and
you just got into RH/Fedora world. There’s no other book that dis-
cusses so many different topics and in such depth.”

—Eugenia Loli-Queru
Editor in Chief
OSNews.com

Excerpts of Chapters from

A Practical Guide to Red Hat Linux

THIRD EDITION

Fedora™ Core and

Red Hat Enterprise Linux

Mark G. Sobell

ISBN 0-13-228027-2

Copyright © 2007 Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

® ®

4343

EX
CER

PT
3Chapter3Chapter 2 covered planning the installation of Red Hat Linux:
determining the requirements; performing an upgrade versus a
clean installation; planning the layout of the hard disk; obtain-
ing the files you need for the installation, including how to
download and burn CD and DVD ISO images; and collecting
the information about the system you will need during installa-
tion. This chapter focuses on installing Fedora Core. The pro-
cess of installing Red Hat Enterprise Linux is similar.
Frequently the installation is quite simple, especially if you have
done a good job of planning. Sometimes you may run into a
problem or have a special circumstance; this chapter gives you
tools to use in these cases.

In This Chapter

Booting the System: The boot:
Prompt . 44

The Anaconda Installer 47

Using Disk Druid to Partition
the Disk . 58

LVs: Logical Volumes 61

Setting Up a Dual-Boot System . . . 68

The X Window System. 69

system-config-display: Configures
the Display 70

3

Step-by-Step

Installation

Installing Red Hat Linux 47

The Anaconda Installer

Anaconda, which is written in Python and C, identifies the hardware, builds the
filesystems, and installs or upgrades the Red Hat Linux operating system. Ana-
conda can run in textual or graphical (default) interactive mode or in batch mode
(see “Using the Kickstart Configurator” on page 63).

Exactly which screens Anaconda displays depends on whether you are installing
Fedora Core or Red Hat Enterprise Linux and which parameters you specified fol-
lowing the boot: prompt. With some exceptions—most notably if you are running a
textual installation—Anaconda probes the video card and monitor and starts a
native X server with a log in /tmp/X.log. (This log is not preserved unless you com-
plete the installation.)

While it is running, Anaconda opens the virtual consoles (page 113) shown in
Table 3-1. You can display a virtual console by pressing CONTROL-ALT-Fx, where x is the
virtual console number and Fx is the function key that corresponds to the virtual
console number.

Anaconda does not write to the hard disk until it displays
the Begin Installation screen

tip While you are installing Red Hat Linux, until Anaconda displays the Begin Installation screen
(Figure 3-9, page 55), you can press CONTROL-ALT-DEL to abort the installation process and reboot
the system without making any changes to the hard disk. However, if Anaconda displays the ini-
tialize warning dialog box (page 49), when you click Yes, it writes to the disk immediately.

48 Chapter 3 Step-by-Step Installation

At any time during the installation, you can switch to virtual console 2 (CONTROL-ALT-F2)
and give commands to see what is going on. Do not give any commands that change
any part of the installation process. To switch back to the graphical installation
screen, press CONTROL-ALT-F7.

Using Anaconda

Anaconda provides a Next button at the lower-right corner of each of the installa-
tion screens and a Back button next to it on most screens. When you have com-
pleted the entries on an installation screen, click Next or, from a textual installation,
press the TAB key until the Next button is highlighted and then press RETURN. Select
Back to return to the previous screen. Click Release Notes at the lower-left corner
of the screen to display the release notes for the version of Red Hat Linux you are
installing.

Anaconda Screens

Anaconda displays different screens depending on which commands you give and
which choices you make. During a graphical installation, when you leave the CD
Found screen, Anaconda starts, loads drivers, and probes for the devices it will use
during installation. After probing, it starts the X server. This section describes the
screens that Anaconda displays during a default installation and explains the
choices you can make on each of them.

Logo Anaconda displays the Logo screen (Figure 3-1) after it obtains enough information
to start the X Window System. There is nothing for you to do on this screen except
display the release notes. Select Next.

Language Select the language you want to use for the installation. This language is not neces-
sarily the same language that the installed system will display.

Keyboard Select the type of keyboard attached to the system.

Monitor Anaconda displays the Monitor screen only if it cannot probe the monitor success-
fully. Select the brand and model of the monitor attached to the system. Select a
generic LCD or CRT display if the monitor is not listed. You can specify the Sync

Table 3-1 Virtual console assignments during installation

Virtual console Information displayed during installation

1 Installation dialog

2 Shell

3 Installation log

4 System messages

5 Miscellaneous messages

7 GUI interactive installation

Installing Red Hat Linux 49

frequencies in place of the monitor brand and model, but be careful: Specifying the
wrong values can ruin some older hardware.

Initialize warning This warning is displayed if the hard disk has not been used before. The dialog box
says that the partition table on the device was unreadable and asks if you want to
initialize the drive. When you initialize a drive, all data on the drive is lost. Click
Yes if it is a new drive or if you do not need the data on the drive. Anaconda initial-
izes the hard disk immediately.

Install or Upgrade Anaconda displays the Install or Upgrade screen (Figure 3-2) only if it detects a ver-
sion of Red Hat Linux on the hard disk that it can upgrade. Anaconda gives you the
choice of upgrading the existing installation or overwriting the existing installation
with a new one. Refer to “Installing a Fresh Copy or Upgrading an Existing Red
Hat System?” on page 27 for help in making this selection.

Figure 3-1 The Logo screen

Figure 3-2 The Install or Upgrade screen

50 Chapter 3 Step-by-Step Installation

Partition the Disk The Partition the Disk screen (Figure 3-3) allows you to specify partition informa-
tion and to select which drives you want to install Red Hat Linux on (assuming the
system has more than one drive). Specify which drives you want to install Linux on
in the frame labeled Select the drive(s) to use for this installation. Anaconda pre-
sents the following options in a combo box; click the box and then click the choice
you want:

• Remove all partitions on selected drives and create default layout.
Deletes all data on the disk and creates a free space the size of the disk to
work with, as though you were working with a new drive.

• Remove linux partitions on selected drives and create default layout.
Removes all Linux partitions, deleting the data on those partitions and
creating one or more chunks of free space (page 1033) on the disk. You
can create new partitions using the free space. If there is only a Linux sys-
tem on the disk, this choice is the same as the previous one.

• Use free space on selected drives and create default layout. Installs Red
Hat Linux in the free space on the disk. Does not work if there is not
enough free space.

• Create custom layout. Does not alter disk partitions. This choice causes
Anaconda to run Disk Druid (page 58) so that you can preserve the parti-
tions you want to keep and overwrite other partitions. It is good for
installing Red Hat Linux over an existing system where you want to keep
/home, for example, but want a clean install and not an upgrade.

The default layout that the first three choices create includes two logical volumes
(LVs: swap and root [/]) and one standard partition (/boot). With this setup, most
of the space on the disk is assigned to the root partition. For information on the
Logical Volume Manager, see page 32.

Figure 3-3 The Partition the Disk screen

Installing Red Hat Linux 51

If you put a check mark in the box labeled Review and modify partitioning layout or
if you select Create custom layout in the combo box, Anaconda runs Disk Druid
(page 58) so that you can verify and modify the layout before it is written to the disk.

Disk Druid Anaconda runs Disk Druid only if you put a check mark in the box labeled Review
and modify partitioning layout or if you select Create custom layout from the
combo box as described in the previous section. See page 58 for information on the
Disk Druid disk-partitioning program.

Warning Displays a warning if you are removing or formatting partitions. Click Format or
Yes to proceed.

Boot Loader
Configuration

Anaconda displays the Boot Loader Configuration screen (Figure 3-4) only when
you put a check mark in the box labeled Review and modify partitioning layout or
select Create custom layout in the combo box in the Partition the Disk screen. By
default, Anaconda installs the grub boot loader (page 533). If you do not want to
install a boot loader, click the radio button next to No boot loader will be installed.
When you install Red Hat Linux on a machine that already runs another operating
system, Anaconda frequently recognizes the other operating system and sets up grub
so you can boot from either operating system. Refer to “Setting Up a Dual-Boot
System” on page 68. To manually add other operating systems to grub’s list of boot-
able systems, click Add and specify a label and device to boot from. For a more
secure system, specify a boot loader password.

Figure 3-4 The Boot Loader Configuration screen

The disk is not partitioned until later

tip With one exception, Anaconda does not write to the hard disk when you specify partitions.
Instead, it creates a table that specifies how you want the hard disk to be partitioned. The disk is
actually partitioned and formatted when you click Next from the Begin installation screen
(page 54). However, if Anaconda displays the initialize warning dialog box (page 49), when you
click Yes, it writes to the disk immediately.

233233

EX
CER

PT
8Chapter8This chapter covers the Linux graphical user interface (GUI). It
continues where Chapter 4 left off, going into more detail
about the X Window System, the basis for the Linux GUI. It
presents a brief history of GNOME and KDE and discusses
some of the problems and benefits of having two major Linux
desktop environments. The section on GNOME covers the
Nautilus file manager, including its spatial interface, and several
important GNOME utilities. The final section covers KDE, pre-
senting information about some of the more advanced features
of Konqueror, and describing a few KDE utilities.

In This Chapter

X Window System 234

Starting X from a Character-Based
Display . 236

Remote Computing and
Local Displays 237

Window Managers 240

The Nautilus File Manager 242

GNOME Utilities 248

Konqueror Browser/File Manager 252

KDE Utilities. 260

8

Linux GUIs: X,

GNOME, and KDE

242 Chapter 8 Linux GUIs: X, GNOME, and KDE

Using GNOME

This section discusses the Nautilus file manager and several GNOME utilities.

The Nautilus File Manager

Nautilus is a simple, powerful file manager. You can use it to create, open, view,
move, and copy files and directories as well as execute programs and scripts. Nauti-
lus gives you two ways to work with files: an innovative spatial view (Figure 8-2)
and a traditional File Browser view (Figure 8-4 on page 244).

Spatial View

The Nautilus object window presents a spatial view (Figure 8-2). This view has many
powerful features but may take some getting used to. The spatial (as in “having the

Using GNOME 243

nature of space”) view always provides one window per folder. By default, when you
open a folder, Nautilus displays a new window.

To open a spatial view of your home directory, double-click the home icon on the
desktop and experiment as you read this section. If you double-click the Desktop
icon in the spatial view, Nautilus opens a new window that displays the Desktop
folder.

A spatial view can display icons or a list of filenames; select your preferred format
by choosing one of the View as selections from View on the menubar. To create files
to experiment with, right-click in the window (not on an icon) to display the Nauti-
lus context menu and select Create Folder or Create Document.

Window memory Move the window by dragging the titlebar. The spatial view has window memory.
The next time you open that folder, Nautilus opens it at the same size in the same
location. Even the scrollbar will be in the same position.

Parent-folders
button

The key to closing the current window and returning to the window of the parent
directory is the Parent-folders button (Figure 8-2). Click this button to display the

Figure 8-2 The Nautilus spatial view

Parent-folders
button

GNOME desktop and Nautilus

tip The GNOME desktop is run from a back-end process that runs as part of Nautilus. If that pro-
cess stops running, it usually restarts automatically. If it does not restart, give the command
nautilus to restore the desktop. You do not have to keep the Nautilus window open to keep the
desktop alive.

Use SHIFT to close the current window as you open another window
tip If you hold the SHIFT key down when you double-click to open a new window, Nautilus closes the

current window as it opens the new one. This behavior may be more familiar and can help keep
the desktop from becoming overly cluttered. If you do not want to use the keyboard, you can
achieve the same result by double-clicking the middle mouse button.

244 Chapter 8 Linux GUIs: X, GNOME, and KDE

Parent-folders pop-up menu (Figure 8-3). Select the directory you want to open
from this menu. Nautilus then displays in a spatial view the directory you specified.

From a spatial view, you can open a folder in a traditional view by right-clicking the
folder and selecting Browse Folder.

Traditional View

Figure 8-4 shows the traditional, or file browser, window with a Side pane (some-
times called a sidebar), View pane, menubar, toolbar, and location bar. To open a
Browser view of your home directory, either right-click the home icon on the desk-
top and select Browse Folder or select Applications: System Tools File Browser.

Side Pane

Click the button at the top of the Side pane to display the Side pane menu. From
this menu select the type of items you want Nautilus to display in the Side pane:

Figure 8-3 The Parent-folders pop-up menu

Figure 8-4 Nautilus traditional (file browser) window

Parent-folders
pop-up menu

Location bar

Menubar

Toolbar

Side pane

View pane

Using GNOME 245

Places, Information (information about the folder displayed in the View pane; see
Figure 8-4), Tree (directory hierarchy), History (list of recent locations displayed by
Nautilus), Notes, or Emblems (drag emblems [page 247] to files in the View pane).

View Pane

You can display icons or a list of filenames in the View pane. Choose your preferred
view by making a selection from the drop-down menu that appears at the right end
of the location bar. View as Icons is shown in Figure 8-4 and View as List is shown
in Figure 8-5.

Control Bars

This section discusses the three control bars—menubar, toolbar, and location
bar—that initially appear at the top of a Nautilus browser window (Figure 8-4).

Menubar The menubar presents a drop-down menu when you click one of its selections. The
menu selections depend on what Nautilus is displaying in the View pane.

Toolbar The Nautilus toolbar holds navigation tool icons: Back, Forward, Up, Stop, Reload,
Home, Computer, and Search. Click the down arrow button at the right end of the
toolbar to display and select icons that do not fit on the toolbar.

Location bar The buttons on the location bar depict the pathname of the directory that is dis-
played in the View pane and highlighted in the Tree tab, when it is displayed in the
Side pane. You can display a text box in the location bar by pressing CONTROL-L. In this
text box you can specify a local directory that you want to display in the View pane.
When you enter the absolute pathname of the directory and press RETURN, Nautilus
displays the contents of the directory.

The location bar also holds the magnification selector and the View as drop-down
menu. To change the magnification of the display in the View pane, click the plus or
minus sign on either side of the magnification percentage; click the magnification

Figure 8-5 Nautilus displaying a List view

246 Chapter 8 Linux GUIs: X, GNOME, and KDE

percentage itself to return to 100% magnification. Click View as (to the right of the
magnifying glass) to display and choose from the viewing selections.

Features Available from Both Spatial and

Traditional Views

Open Location
dialog box

You can display deeply nested directories quickly by using the Open Location dia-
log box (Figure 8-6) or the location bar. Press CONTROL-L while the cursor is over a
Nautilus window to display the Open Location dialog box (spatial view) or to move
the cursor to the location bar (traditional view). Enter the absolute pathname of the
directory you want to display. Nautilus provides assistance by completing directory
names as you type. Press TAB to accept a suggested completion or keep typing to
ignore it.

Zooming images Use the Open Location dialog box or the location bar to display the directory
named /usr/share/backgrounds/images. Double-click an image file to display that
file in a preview window. Position the mouse pointer over the image and use the
mouse wheel to zoom the image. When the image is bigger than the window, you
can drag the image to view different parts of it.

Opening files By default, you double-click a filename or icon to open it, or you can right-click the
icon or filename and choose Open from the pop-up menu. When you open a file,
Nautilus figures out the appropriate tool to use by determining the file’s MIME type
(page 96). GNOME associates each filename extension with a MIME type and each
MIME type with a program. Initially GNOME uses the filename extension to try to
determine a file’s MIME type. For example, when you open a file with a filename
extension of ps, Nautilus calls KGhostView, which displays the PostScript file in a
readable format. When you open a text file, Nautilus opens a text editor that dis-
plays and allows you to edit the file. When you open a directory, Nautilus displays
its contents. When you open an executable file such as Firefox, Nautilus runs the
executable. When Nautilus cannot determine which tool to use to open a file, it asks
you for assistance. See “Open With” on page 248 for information on how to
change the program that GNOME associates with a MIME type.

Properties

You can view information about a file, such as ownership, permissions, size, ways
to work with it, and so on, by right-clicking a filename or icon and selecting Proper-
ties from the drop-down menu. The Properties window initially displays some basic
information. Click the tabs at the top of the window to display additional informa-
tion. Different types of files display different sets of tabs, depending on what is

Figure 8-6 Open Location dialog box

Using GNOME 247

appropriate to the file. You can modify the settings in this window only if you have
permission to do so.

Basic The Basic tab displays information about the file and enables you to select a custom
icon for the file or change its name. To change the name of the file, make your
changes in the text box. If the filename is not listed in a text box, you do not have
permission to change it.

Emblems The Emblems tab (Figure 8-7, left) allows you to add or remove emblems associated
with the file by placing (removing) a check mark in the box next to an emblem.
Figure 8-8 shows some emblems on a file icon. Nautilus displays emblems in both
its Icon and List views, although there may not be room for more than one icon in
the List view. You can also place an emblem on an icon by dragging it from the Side
pane Emblems tab to an icon in the View pane. Drag the Erase emblem to an icon to
remove all emblems from the icon.

Permissions The Permissions tab (Figure 8-7, right) allows you to change file permissions
(page 181). When the box to the left of the word Read in the Owner row (called
user elsewhere; see the tip “chmod: o for other, u for owner” on page 183) has a

Figure 8-7 Properties window: Emblems tab (left); Permissions tab (right)

Figure 8-8 Emblems

248 Chapter 8 Linux GUIs: X, GNOME, and KDE

check mark in it, the owner has permission to read the file. When you click the
boxes in the Owner row so all of them contain check marks, the owner has read,
write, and execute permissions. The owner of a file can change the group that the
file is associated with to any other group the owner is associated with. When you
run as Superuser, you can change the name of the user who owns the file and the
group the file is associated with. Directory permissions work as explained on
page 184. See page 183 for information on set user ID and set group ID permis-
sions, and page 1057 for a description of the sticky bit.

Open With When you ask it to open a file that is not executable (by double-clicking its icon or
right-clicking and selecting Open with), GNOME must figure out which application
or utility to use when opening the file. GNOME uses several techniques to deter-
mine the MIME type (page 96) of a file and selects an appropriate application based
on that determination.

The Open With tab (Figure 8-9) enables you to change which applications GNOME
uses to open the current file and other files of the same MIME type (typically files
with the same filename extension). Click Add to add an application and then click
the radio button next to the application to cause GNOME to use that application to
open the current file and others of the same MIME type. Highlight an application
and click Remove to remove an application from the list. You cannot remove the
default application.

GNOME Utilities

GNOME comes with numerous utilities intended to make your work on the desk-
top easier and more productive. This section covers several tools that are integral to
the use of GNOME.

Figure 8-9 Properties window, Open With tab

Using GNOME 249

beagle: Desktop Search (FEDORA)

To run beagle, enter beagle-search on a command line or select Places: Search on the
panel at the top of the screen. This utility displays the Desktop Search window
(Figure 8-10), from which you can search for a string of characters in a filename and in
the contents of a file. To choose the type of files you want to search, make a selection
from the menu displayed when you click Search on the menubar. By default, beagle
searches files in your home directory hierarchy. Click Search Preferences Indexing
to instruct beagle to search other directories. If, when you start beagle, it displays Dae-
mon not running, click Start the daemon to start the beagled daemon.

To begin a search, enter the word or string of characters you want to search for in
the Find text box. The beagle utility starts searching a moment after you stop typ-
ing. Click Find Now to display additional information about the selected file.

The Sort selection on the menubar allows you to sort the results of a search alphabet-
ically by filename, by the date the file was modified, or by the relevance of each result.

Font Preferences

To display the GNOME Font Preferences window (Figure 8-11, next page), enter
gnome-font-properties on a command line. You can also select System: Prefer-
ences Fonts from the panel at the top of the screen. Click one of the five font bars
in the upper part of the window to display the Pick a Font window (discussed in the
next section). In this window you can change the font that GNOME uses for appli-
cations, documents, the desktop, window titles, or terminal emulators (fixed width).

Examine the four sample boxes in the Font Rendering frame in the lower part of the
window and select the one with the best appearance. Subpixel smoothing is usually
best for LCD monitors. Click Details to refine the font rendering further, again
picking the box in each frame that has the best appearance.

Figure 8-10 Desktop Search window

250 Chapter 8 Linux GUIs: X, GNOME, and KDE

Pick a Font Window

The Pick a Font window (Figure 8-12) appears when you need to choose a font.
From this window you can select a font family, a style, and a size you want to use. A
preview of your choice appears in the Preview frame in the lower part of the win-
dow. Click OK when you are satisfied with your choice.

Figure 8-11 Font Preferences window

Figure 8-12 Pick a Font window

389389

EX
CER

PT
11Chapter11The job of a system administrator is to keep one or more sys-
tems in a useful and convenient state for users. On a Linux sys-
tem, the administrator and user may both be you, with you and
the computer being separated by only a few feet. Or the system
administrator may be halfway around the world, supporting a
network of systems, with you being simply one of thousands of
users. A system administrator can be one person who works
part-time taking care of a system and perhaps is also a user of
the system. Or the administrator can be several people, all
working full-time to keep many systems running.

In This Chapter

System Administrator and
Superuser. 391

Rescue Mode. 397

SELinux . 400

Red Hat Configuration Tools. 415

rpcinfo: Displays Information
About portmap 423

The xinetd Superserver. 425

TCP Wrappers: Client/Server
Security (hosts.allow and
hosts.deny) 427

Setting Up a chroot Jail 428

DHCP: Configures Hosts 431

nsswitch.conf: Which Service
to Look at First 435

PAM . 438

11

System

Administration: Core

Concepts

Setting Up a Server 425

The xinetd Superserver

The xinetd daemon is a more secure replacement for the inetd superserver that was
originally shipped with 4.3BSD. The xinetd superserver listens for network connec-
tions. When one is made, it launches a specified server daemon and forwards the
data from the socket (page 462) to the daemon’s standard input.

The version of xinetd distributed with Red Hat Linux is linked against libwrap.a, so
it can use the /etc/hosts.allow and /etc/hosts.deny files for access control (see “TCP
Wrappers” on page 427 for more information). Using TCP wrappers can simplify
configuration but hides some of the more advanced features of xinetd.

The base configuration for xinetd is stored in the /etc/xinetd.conf file. If this file is
not present, xinetd is probably not installed. See the preceding tip. The file supplied
with Red Hat Linux is shown here:

$ cat /etc/xinetd.conf
#
Simple configuration file for xinetd
#
Some defaults, and include /etc/xinetd.d/

defaults
{
 instances = 60
 log_type = SYSLOG authpriv
 log_on_success = HOST PID
 log_on_failure = HOST
 cps = 25 30
}

includedir /etc/xinetd.d

The defaults section specifies the default configuration of xinetd; the files in the
included directory, /etc/xinetd.d, specify server-specific configurations. Defaults can
be overridden by server-specific configuration files.

xinetd may not be installed
tip Working as root, give the following command to install xinetd on a FEDORA system:

yum install xinetd

Use RHN to install it on a RHEL system.

426 Chapter 11 System Administration: Core Concepts

In the preceding file, the instances directive specifies that no daemon may run more
than 60 copies of itself at one time. The log_type directive specifies that xinetd send
messages to the system log daemon (syslogd, page 562) using the authpriv facility.
The next two lines specify what to log on success and on failure. The cps (connec-
tions per second) directive specifies that no more than 25 connections to a specific
service should be made per second and that the service should be disabled for 30
seconds if this limit is exceeded.

The following xinetd configuration file allows telnet connections from the local sys-
tem and any system with an IP address that starts with 192.168. . This configuration
file does not rely on TCP wrappers, so it does not rely on the hosts.allow and
hosts.deny files.

$ cat /etc/xinetd.d/telnet
service telnet
{

socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
only_from = 192.168.0.0/16 127.0.0.1
disable = no

}

The socket_type indicates whether the socket uses TCP or UDP. TCP-based proto-
cols establish a connection between the client and the server and are identified by
the type stream. UDP-based protocols rely on the transmission of individual data-
grams and are identified by the type dgram.

When wait is set to no, xinetd handles multiple concurrent connections to this ser-
vice. Setting wait to yes causes xinetd to wait for the server process to complete
before handling the next request for that service. In general, UDP services should be
set to yes and TCP services to no. If you were to set wait to yes for a service such as
telnet, only one person would be able to use the service at any given time.

The user specifies which user the server runs as. If this user is a member of multiple
groups, you can also specify the group on a separate line with the keyword group.
The user directive is ignored if xinetd is run as other than root. The server provides
the pathname of the server program that xinetd runs for this service.

The only_from specifies which systems xinetd allows to use the service. It is a good
idea to use IP addresses only—using hostnames can make the service unavailable if
DNS fails. Zeros at the right of an IP address are treated as wildcards. For example,
192.168.0.0 allows access from any system in the 192.168 subnet.

The disable line can disable a service without removing the configuration file. As
shipped by Red Hat, a number of services include an xinetd configuration file with
disable set to yes. To run one of these services, change disable to no in the appropri-
ate file in xinetd.d and restart xinetd:

Setting Up a Server 427

/sbin/service xinetd restart
Stopping xinetd: [OK]
Starting xinetd: [OK]

Securing a Server

You may secure a server either by using TCP wrappers or by setting up a chroot jail.

TCP Wrappers: Client/Server Security (hosts.allow and

hosts.deny)

When you open a local system to access from remote systems, you must ensure that
the following criteria are met:

• Open the local system only to systems you want to allow to access it.

• Allow each remote system to access only the data you want it to access.

• Allow each remote system to access data only in the appropriate manner
(readonly, read/write, write only).

As part of the client/server model, TCP wrappers, which can be used for any dae-
mon that is linked against libwrap.a, rely on the /etc/hosts.allow and
/etc/hosts.deny files as the basis of a simple access control language. This access
control language defines rules that selectively allow clients to access server dae-
mons on a local system based on the client’s address and the daemon the client tries
to access.

Each line in the hosts.allow and hosts.deny files has the following format:

daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such
as portmap, vsftpd, or sshd), client_list is a comma-separated list of one or more cli-
ents (see Table 11-3, “Specifying a client,” on page 422), and the optional com-
mand is the command that is executed when a client from client_list tries to access
a server daemon from daemon_list.

When a client requests a connection with a local server, the hosts.allow and
hosts.deny files are consulted as follows until a match is found:

1. If the daemon/client pair matches a line in hosts.allow, access is granted.

2. If the daemon/client pair matches a line in hosts.deny, access is denied.

3. If there is no match in either the hosts.allow or the hosts.deny files, access
is granted.

The first match determines whether the client is allowed to access the server. When
either hosts.allow or hosts.deny does not exist, it is as though that file was empty.
Although it is not recommended, you can allow access to all daemons for all clients
by removing both files.

428 Chapter 11 System Administration: Core Concepts

Examples For a more secure system, put the following line in hosts.deny to block all access:

$ cat /etc/hosts.deny
...
ALL : ALL : echo '%c tried to connect to %d and was blocked' >> /var/log/tcpwrappers.log

This line prevents any client from connecting to any service, unless specifically per-
mitted in hosts.allow. When this rule is matched, it adds a line to the file named
/var/log/tcpwrappers.log. The %c expands to client information and the %d
expands to the name of the daemon the client attempted to connect to.

With the preceding hosts.deny file in place, you can include lines in hosts.allow that
explicitly allow access to certain services and systems. For example, the following
hosts.allow file allows anyone to connect to the OpenSSH daemon (ssh, scp, sftp)
but allows telnet connections only from the same network as the local system and
users on the 192.168. subnet:

$ cat /etc/hosts.allow
sshd : ALL
in.telnet : LOCAL
in.telnet : 192.168.* 127.0.0.1
...

The first line allows connection from any system (ALL) to sshd. The second line
allows connection from any system in the same domain as the server (LOCAL). The
third line matches any system whose IP address starts 192.168. and the local system.

Setting Up a chroot Jail

On early UNIX systems, the root directory was a fixed point in the filesystem. On
modern UNIX variants, including Linux, you can define the root directory on a per-
process basis. The chroot utility allows you to run a process with a root directory
other than /.

The root directory appears at the top of the directory hierarchy and has no parent:
A process cannot access any files above the root directory (because they do not
exist). If, for example, you run a program (process) and specify its root directory as
/home/sam/jail, the program would have no concept of any files in /home/sam or
above: jail is the program’s root directory and is labeled / (not jail).

By creating an artificial root directory, frequently called a (chroot) jail, you prevent a
program from accessing or modifying—possibly maliciously—files outside the
directory hierarchy starting at its root. You must set up a chroot jail properly to
increase security: If you do not set up a chroot jail correctly, you can actually make it
easier for a malicious user to gain access to a system than if there were no chroot jail.

Using chroot
Creating a chroot jail is simple: Working as root, give the command /usr/sbin/chroot
directory. The directory becomes the root directory and the process attempts to run
the default shell. Working as root from the /home/sam directory, the following
command sets up a chroot jail in the (existing) /home/sam/jail directory:

Setting Up a Server 429

/usr/sbin/chroot /home/sam/jail
/usr/sbin/chroot: cannot run command '/bin/bash': No such file or directory

This example sets up a chroot jail, but when it attempts to run the bash shell, it fails.
Once the jail is set up, the directory that was named jail takes on the name of the
root directory, /, so chroot cannot find the file identified by the pathname /bin/bash.
In this situation the chroot jail is working but is not useful.

Getting a chroot jail to work the way you want is a bit more complicated. To have
the preceding example run bash in a chroot jail, you need to create a bin directory in
jail (/home/sam/jail/bin) and copy /bin/bash to this directory. Because the bash
binary is dynamically linked to shared libraries (page 840), you need to copy these
libraries into jail as well. The libraries go in lib. The next example creates the neces-
sary directories, copies bash, uses ldd to display the shared library dependencies of
bash, and copies the necessary libraries into lib. The linux-gate.so.1 file is a dynam-
ically shared object (DSO) provided by the kernel to speed system calls; you do not
need to copy it to the lib directory.

$ pwd
/home/sam/jail
$ mkdir bin lib
$ cp /bin/bash bin
$ ldd bin/bash
 linux-gate.so.1 => (0x0089c000)
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x00cdb000)
 libdl.so.2 => /lib/libdl.so.2 (0x00b1b000)
 libc.so.6 => /lib/libc.so.6 (0x009cb000)
 /lib/ld-linux.so.2 (0x009ae000)
$ cp /lib/{libtermcap.so.2,libdl.so.2,libc.so.6,ld-linux.so.2} lib

Now that everything is set up, you can start the chroot jail again. Although all of the
setup can be done by an ordinary user, you have to run chroot as Superuser:

$ su
Password:
/usr/sbin/chroot .
bash-3.1# pwd
/
bash-3.1# ls
bash: ls: command not found
bash-3.1#

This time the chroot finds and starts bash, which displays its default prompt (bash-
3.1#). The pwd command works because it is a shell builtin (page 225). However,
bash cannot find the ls utility (it is not in the chroot jail). You can copy /bin/ls and
its libraries into the jail if you want users in the jail to be able to use ls.

To set up a useful chroot jail, first determine which utilities the users of the chroot jail
will need. Then copy the appropriate binaries and their libraries into the jail. Alter-
natively you can build static copies of the binaries and put them in the jail without
installing separate libraries. (The statically linked binaries are considerably larger
than their dynamic counterparts. The base system with bash and the core utilities

430 Chapter 11 System Administration: Core Concepts

exceeds 50 megabytes.) You can find the source code for most of the common utili-
ties in the bash and coreutils SRPMS (source rpm) packages.

Whichever technique you choose, you must put a copy of su in the jail. The su com-
mand is required to run programs as a user other than root. Because root can break
out of a chroot jail, it is imperative that you run a program in the chroot jail as a user
other than root.

The dynamic version of su distributed by Red Hat requires PAM and will not work
within a jail. You need to build a copy of su from the source to use in a jail. By
default any copy of su you build does not require PAM. Refer to “GNU Configure
and Build System” on page 491 for instructions on how to build packages such as
coreutils (which includes su).

To use su, you must copy the relevant lines from the /etc/passwd and /etc/shadow
files into files with the same names in the etc directory inside the jail.

Running a Service in a chroot Jail

Running a shell inside a jail has limited usefulness. Instead you are more likely to
need to run a specific service inside the jail. To run a service inside a jail, you must
make sure all files needed by that service are inside the jail. The format of a com-
mand to start a service in a chroot jail is

/usr/sbin/chroot jailpath /bin/su user daemonname &

where jailpath is the pathname of the jail directory, user is the username that runs
the daemon, and daemonname is the path (inside the jail) of the daemon that provides
the service.

Some servers are already set up to take advantage of chroot jails. You can set up
DNS so that named runs in a jail (page 750), and the vsftpd FTP server can auto-
matically start chroot jails for clients (page 616).

Security Considerations

Some services need to be run as root, but they release their root privilege once
started (Procmail and vsftpd are examples). If you are running such a service, you
do not need to put su inside the jail.

A process run as root could potentially escape from a chroot jail. For this reason,
you should always su to another user before starting a program running inside the
jail. Also, be careful about which setuid (page 183) binaries you allow inside a
jail—a security hole in one of them could compromise the security of the jail. In
addition, make sure the user cannot access executable files that he uploads.

Keeping multiple chroot jails
tip If you plan to deploy multiple chroot jails, it is a good idea to keep a clean copy of the bin and lib

files somewhere other than in one of the active jails.

Setting Up a Server 431

DHCP: Configures Hosts

Instead of storing network configuration information in local files on each system,
DHCP (Dynamic Host Configuration Protocol) enables client systems to retrieve
network configuration information each time they connect to the network. A
DHCP server assigns an IP addresses from a pool of addresses to clients as needed.
Assigned addresses are typically temporary, but need not be.

This technique has several advantages over storing network configuration informa-
tion in local files:

• A new user can set up an Internet connection without having to deal with
IP addresses, netmasks, DNS addresses, and other technical details. An
experienced user can set up a connection more quickly.

• DHCP facilitates assignment and management of IP addresses and
related network information by centralizing the process on a server. A
system administrator can configure new systems, including laptops that
connect to the network from different locations, to use DHCP; DHCP
then assigns IP addresses only when each system connects to the net-
work. The pool of IP addresses is managed as a group on the DHCP
server.

• IP addresses can be used by more than one system, reducing the total num-
ber of IP addresses needed. This conservation of addresses is important
because the Internet is quickly running out of IPv4 addresses. Although a
particular IP address can be used by only one system at a time, many end-
user systems require addresses only occasionally, when they connect to the
Internet. By reusing IP addresses, DHCP lengthens the life of the IPv4 pro-
tocol. DHCP applies to IPv4 only, as IPv6 forces systems to configure their
IP addresses automatically (called autoconfiguration) when they connect
to a network (page 359).

DHCP is particularly useful for administrators who are responsible for maintaining
a large number of systems because individual systems no longer need to store
unique configuration information. With DHCP, the administrator can set up a mas-
ter system and deploy new systems with a copy of the master’s hard disk. In educa-
tional establishments and other open access facilities, the hard disk image may be
stored on a shared drive, with each workstation automatically restoring itself to
pristine condition at the end of each day.

More Information

Web www.dhcp.org

FAQ www.dhcp-handbook.com/dhcp_faq.html

HOWTO DHCP Mini HOWTO

432 Chapter 11 System Administration: Core Concepts

How DHCP Works

The client daemon, dhclient (part of the dhcp package), contacts the server daemon,
dhcpd, to obtain the IP address, netmask, broadcast address, nameserver address,
and other networking parameters. The server provides a lease on the IP address to
the client. The client can request the specific terms of the lease, including its dura-
tion; the server can, in turn, limit these terms. While connected to the network, a
client typically requests extensions of its lease as necessary so its IP address remains
the same. The lease can expire once the client is disconnected from the network,
with the server giving the client a new IP address when it requests a new lease. You
can also set up a DHCP server to provide static IP addresses for specific clients
(refer to “Static Versus Dynamic IP Addresses” on page 354).

DHCP is broadcast based, so both client and server must be on the same subnet
(page 357).

DHCP Client

A DHCP client requests network configuration parameters from the DHCP server
and uses those parameters to configure its network interface.

Prerequisites

Install the following package:

• dhclient

dhclient: The DHCP Client

When a DHCP client system connects to the network, dhclient requests a lease from
the DHCP server and configures the client’s network interface(s). Once a DHCP cli-
ent has requested and established a lease, it stores information about the lease in a
file named dhclient.leases, which is stored in /var/lib/dhcp (RHEL) or /var/lib/dhclient
(FEDORA). This information is used to reestablish a lease when either the server or the
client needs to reboot. The DHCP client configuration file, /etc/dhclient.conf, is
required only for custom configurations. The following dhclient.conf file specifies a
single interface, eth0:

$ cat /etc/dhclient.conf
interface “eth0”
{
send dhcp-client-identifier 1:xx:xx:xx:xx:xx:xx;
send dhcp-lease-time 86400;
}

In the preceding file, the 1 in the dhcp-client-identifier specifies an Ethernet network
and xx:xx:xx:xx:xx:xx is the MAC address (page 1041) of the device controlling
that interface. See page 434 for instructions on how to display a MAC address. The
dhcp-lease-time is the duration, in seconds, of the lease on the IP address. While the
client is connected to the network, dhclient automatically renews the lease each time
half of the lease is up. The lease time of 8,6400 seconds (or one day) is a reasonable
choice for a workstation.

Setting Up a Server 433

DHCP Server

The DHCP server maintains a list of IP addresses and other configuration parame-
ters. When requested to do so, the DHCP server provides configuration parameters
to a client.

Prerequisites

Install the following package:

• dhcp

Run chkconfig to cause dhcpd to start when the system enters multiuser mode:

/sbin/chkconfig dhcpd on

Start dhcpd:

/sbin/service dhcpd start

dhcpd: The DHCP Daemon

A simple DCHP server allows you to add clients to a network without maintain-
ing a list of assigned IP addresses. A simple network, such as a home LAN sharing
an Internet connection, can use DHCP to assign a dynamic IP address to almost
all nodes. The exceptions are servers and routers, which must be at known net-
work locations to be able to receive connections. If servers and routers are config-
ured without DHCP, you can specify a simple DHCP server configuration in
/etc/dhcpd.conf:

$ cat /etc/dhcpd.conf
default-lease-time 600;
max-lease-time 86400;

option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.200;
}

The preceding configuration file specifies a LAN where the router and DNS are
both located on 192.168.1.1. The default-lease-time specifies the number of seconds
the dynamic IP lease will remain valid if the client does not specify a duration. The
max-lease-time is the maximum time allowed for a lease.

The information in the option lines is sent to each client when it connects. The
names following the word option specify what the following argument represents.
For example, the option broadcast-address line specifies the broadcast address of
the network. The routers and domain-name-servers options allow multiple values
separated by commas.

434 Chapter 11 System Administration: Core Concepts

The subnet section includes a range line that specifies the range of IP addresses that
the DHCP server can assign. If you define multiple subnets, you can define options,
such as subnet-mask, inside the subnet section. Options defined outside all subnet
sections are global and apply to all subnets.

The preceding configuration file assigns addresses in the range between 192.168.1.2
and 192.168.1.200. The DHCP server starts at the bottom of this range and
attempts to assign a new IP address to each new client. Once the DHCP server
reaches the top of the range, it starts reassigning IP addresses that have been used in
the past, but are not currently in use. If you have fewer systems than IP addresses,
the IP address of each system should remain fairly constant. You cannot use the
same IP address for more than one system at a time.

Once you have configured a DHCP server, you can start (or restart) it by using the
dhcpd init script:

/sbin/service dhcpd restart

Once the server is running, clients configured to obtain an IP address from the
server using DHCP should be able to do so.

Static IP Addresses

As mentioned earlier, routers and servers typically require static IP addresses. While
you can manually configure IP addresses for these systems, it may be more conve-
nient to have the DHCP server provide them with static IP addresses.

When a system that requires a specific static IP address connects to the network and
contacts the DHCP server, the server needs a way to identify the system so the
server can assign the proper IP address to the system. The DHCP server uses the
MAC address (page 1041) of the system’s Ethernet card (NIC) as an identifier.
When you set up the server, you must know the MAC address of each system that
requires a static IP address.

Displaying a MAC
address

You can use ifconfig to display the MAC addresses of the Ethernet cards (NICs) in a
system. In the following example, the MAC addresses are the colon-separated series
of hexadecimal number pairs following HWaddr:

$ /sbin/ifconfig | grep -i hwaddr
eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF
eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

Run ifconfig on each system that requires a static IP address. Once you have deter-
mined the MAC address of each of these systems, you can add a host section to the
/etc/dhcpd.conf file for each system, instructing the DHCP server to assign a spe-
cific address to the system. The following host section assigns the address
192.168.1.1 to the system with the MAC address of BA:DF:00:DF:C0:FF:

nsswitch.conf: Which Service to Look at First 435

$ cat /etc/dhcpd.conf
...
host router {
 hardware ethernet BA:DF:00:DF:C0:FF;
 fixed-address 192.168.1.1;
 option host-name router;
}

The name following host is used internally by dhcpd. The name specified after
option host-name is passed to the client and can be a hostname or an FQDN.

After making changes to dhcpd.conf, restart dhcpd using service and the dhcpd init
script (page 433).

nsswitch.conf: Which Service to Look at First

With the advent of NIS and DNS, finding user and system information was no
longer a simple matter of searching a local file. Where once you looked in
/etc/passwd to get user information and in /etc/hosts to find system address infor-
mation, you can now use several methods to find this type of information. The
/etc/nsswitch.conf (name service switch configuration) file specifies which methods
to use and the order in which to use them when looking for a certain type of infor-
mation. You can also specify what action the system takes based on whether a
method works or fails.

Format Each line in nsswitch.conf specifies how to search for a piece of information, such
as a user’s password. A line in nsswitch.conf has the following format:

info: method [[action]] [method [[action]]...]

where info specifies the type of information that the line describes, method is the
method used to find the information, and action is the response to the return status
of the preceding method. The action is enclosed within square brackets.

How nsswitch.conf Works

When called upon to supply information that nsswitch.conf describes, the system
examines the line with the appropriate info field. It uses the methods specified on
the line starting with the method on the left. By default, when it finds the desired
information, the system stops searching. Without an action specification, when a
method fails to return a result, the system tries the next action. It is possible for the
search to end without finding the requested information.

Information

The nsswitch.conf file commonly controls searches for users (in passwd), pass-
words (in shadow), host IP addresses, and group information. The following list

436 Chapter 11 System Administration: Core Concepts

describes most of the types of information (info in the format discussed earlier)
that nsswitch.conf controls searches for.

automount Automount (/etc/auto.master and /etc/auto.misc, page 690)
bootparams Diskless and other booting options (See the bootparam man page.)
ethers MAC address (page 1041)
group Groups of users (/etc/group, page 451)
hosts System information (/etc/hosts, page 452)
netgroup Netgroup information (/etc/netgroup, page 453)
networks Network information (/etc/networks)
passwd User information (/etc/passwd, page 454)
protocols Protocol information (/etc/protocols, page 455)
publickey Used for NFS running in secure mode
rpc RPC names and numbers (/etc/rpc, page 456)
services Services information (/etc/services, page 456)
shadow Shadow password information (/etc/shadow, page 456)

Methods

Following is a list of the types of information that nsswitch.conf controls searches
for (method in the format on page 435). For each type of information, you can
specify one or more of the following methods:2

files Searches local files such as /etc/passwd and /etc/hosts
nis Searches the NIS database; yp is an alias for nis
dns Queries the DNS (hosts queries only)
compat ± syntax in passwd, group, and shadow files (page 438)

Search Order

The information provided by two or more methods may overlap: For example, files
and nis may each provide password information for the same user. With overlap-
ping information, you need to consider which method you want to be authoritative
(take precedence), and put that method at the left of the list of methods.

The default nsswitch.conf file lists methods without actions, assuming no overlap
(which is normal). In this case, the order is not critical: When one method fails, the
system goes to the next one; all that is lost is a little time. Order becomes critical
when you use actions between methods, or when overlapping entries differ.

The first of the following lines from nsswitch.conf causes the system to search for
password information in /etc/passwd and, if that fails, to use NIS to find the infor-
mation. If the user you are looking for is listed in both places, the information in the
local file would be used and therefore would be authoritative. The second line uses

2. There are other, less commonly used methods. See the default /etc/nsswitch.conf file and the nsswitch.conf
man page for more information. Although NIS+ belongs in this list, it is not implemented for Linux and is not
discussed in this book.

nsswitch.conf: Which Service to Look at First 437

NIS; if that fails, it searches /etc/hosts; if that fails, it checks with DNS to find host
information.

passwd files nis
hosts nis files dns

Action Items

Each method can optionally be followed by an action item that specifies what to do
if the method succeeds or fails for any of a number of reasons. An action item has
the following format:

[[!]STATUS=action]

where the opening and closing square brackets are part of the format and do not
indicate that the contents are optional; STATUS (by convention uppercase although
it is not case sensitive) is the status being tested for; and action is the action to be
taken if STATUS matches the status returned by the preceding method. The leading
exclamation point (!) is optional and negates the status.

STATUS Values for STATUS are as follows:

NOTFOUND The method worked but the value being searched for was not
found. Default action is continue.

SUCCESS The method worked and the value being searched for was found; no
error was returned. Default action is return.

UNAVAIL The method failed because it is permanently unavailable. For example,
the required file may not be accessible or the required server may be down. Default
action is continue.

TRYAGAIN The method failed because it was temporarily unavailable. For
example, a file may be locked or a server overloaded. Default action is continue.

action Values for action are as follows:

return Returns to the calling routine with or without a value.

continue Continues with the next method. Any returned value is overwritten by a
value found by the next method.

Example For example, the following line from nsswitch.conf causes the system first to use
DNS to search for the IP address of a given host. The action item following the DNS
method tests whether the status returned by the method is not (!) UNAVAIL.

hosts dns [!UNAVAIL=return] files

The system takes the action associated with the STATUS (return) if the DNS
method does not return UNAVAIL (!UNAVAIL)—that is, if DNS returns SUCCESS,
NOTFOUND, or TRYAGAIN. The result is that the following method (files) is
used only when the DNS server is unavailable: If the DNS server is not unavailable
(read the two negatives as “is available”), the search returns the domain name or
reports that the domain name was not found. The search uses the files method
(check the local /etc/hosts file) only if the server is not available.

438 Chapter 11 System Administration: Core Concepts

compat Method: ± in passwd, group, and shadow Files

You can put special codes in the /etc/passwd, /etc/group, and /etc/shadow files that
cause the system, when you specify the compat method in nsswitch.conf, to com-
bine and modify entries in the local files and the NIS maps.

A plus sign (+) at the beginning of a line in one of these files adds NIS information;
a minus sign (–) removes information. For example, to use these codes in the
passwd file, specify passwd: compat in nsswitch.conf. The system then goes through
the passwd file in order, adding or removing the appropriate NIS entries when it
reaches each line that starts with a + or –.

Although you can put a plus sign at the end of the passwd file, specify passwd: compat
in nsswitch.conf to search the local passwd file, and then go through the NIS map, it is
more efficient to put passwd: file nis in nsswitch.conf and not modify the passwd file.

627627

EX
CER

PT
20Chapter20Sending and receiving email require three pieces of software. At
each end, there is a client, called an MUA (Mail User Agent),
which is a bridge between a user and the mail system. Common
MUAs are mutt, KMail, Thunderbird, and Outlook. When you
send an email, the MUA hands it to an MTA (a Mail Transfer
Agent such as sendmail), which transfers it to the destination
server. At the destination, an MDA (a Mail Delivery Agent such
as procmail) puts the mail in the recipient’s mailbox file. On
Linux systems, the MUA on the receiving system either reads
the mailbox file or retrieves mail from a remote MUA or MTA,
such as an ISP’s SMTP (mail) server, using POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

Most Linux MUAs expect a local copy of sendmail to deliver
outgoing email. On some systems, including those with a dial-
up connection to the Internet, sendmail relays email to an ISP’s
mail server. Because sendmail uses SMTP (Simple Mail Transfer
Protocol) to deliver email, sendmail is often referred to as an
SMTP server.

In This Chapter

JumpStart I: Configuring sendmail
on a Client 630

JumpStart II: Configuring sendmail
on a Server. 631

How sendmail Works 632

Configuring sendmail 635

SpamAssassin. 640

Webmail . 644

Mailing Lists 646

Setting Up an IMAP or
POP3 Server 647

Setting Up KMail 648

Authenticated Relaying 650

20

sendmail: Setting Up

Mail Clients,

Servers, and More

628 Chapter 20 sendmail: Setting Up Mail Clients, Servers, and More

In the default Red Hat Linux setup, the sendmail MTA uses procmail as the local
MDA. In turn, procmail writes email to the end of the recipient’s mailbox file. You
can also use procmail to sort email according to a set of rules, either on a per-user
basis or globally. The global filtering function is useful for systemwide filtering to
detect spam and for other tasks, but the per-user feature is largely superfluous on a
modern system. Traditional UNIX MUAs were simple programs that could not fil-
ter mail and thus delegated this function to MDAs such as procmail. Modern
MUAs, by contrast, incorporate this functionality.

Introduction

When the network that was to evolve into the Internet was first set up, it connected
a few computers, each serving a large number of users and running several services.
Each computer was capable of sending and receiving email and had a unique host-
name, which was used as a destination for email.

Today the Internet has a large number of transient clients. Because these clients do
not have fixed IP addresses or hostnames, they cannot receive email directly. Users
on these systems usually maintain an account on an email server run by their
employer or an ISP, and they collect email from this account using POP or IMAP.
Unless you own a domain that you want to receive email at, you will not need to set
up sendmail as an incoming SMTP server.

You can set up sendmail on a client system so that it simply relays outbound mail to
an SMTP server. This configuration is required by organizations that use firewalls
to prevent email from being sent out on the Internet from any system other than the
company’s official mail servers. As a partial defense against spreading viruses, some
ISPs block outbound port 25 to prevent their customers from sending email directly
to a remote computer. This configuration is required by these ISPs.

You can also set up sendmail as an outbound server that does not use an ISP as a
relay. In this configuration, sendmail connects directly to the SMTP servers for the
domains receiving the email. An ISP set up as a relay is configured this way.

You can set up sendmail to accept email for a registered domain name as specified in
the domain’s DNS MX record (page 726). However, most mail clients (MUAs) do not
interact directly with sendmail to receive email. Instead, they use POP or IMAP—pro-
tocols that include features for managing mail folders, leaving messages on the server,
and reading only the subject of an email without downloading the entire message. If
you want to collect your email from a system other than the one running the incoming
mail server, you may need to set up a POP or IMAP server, as discussed on page 647.

You do not need to set up sendmail to send and receive email
tip Most MUAs can use POP or IMAP for receiving email. These protocols do not require an MTA such

as sendmail. As a consequence, you do not need to install or configure sendmail (or another
MTA) to receive email. You still need SMTP to send email. However, the SMTP server can be at a
remote location, such as your ISP, so you do not need to concern yourself with it.

Introduction 629

Prerequisites

Install the following packages:

• sendmail (required)

• sendmail-cf (required to configure sendmail)

• squirrelmail (optional; provides Webmail, page 644)

• spamassassin (optional; provides spam filtering, page 640)

• mailman (optional; provides mailing list support, page 646)

• dovecot (optional; provides IMAP and POP incoming mail server daemons)

Run chkconfig to cause sendmail to start when the system goes multiuser (by default,
sendmail does not run in single-user mode):

/sbin/chkconfig sendmail on

Start sendmail. Because sendmail is normally running, you need to restart it to cause
sendmail to reread its configuration files. The following restart command works
even when sendmail is not running—it just fails to shut down sendmail:

/sbin/service sendmail restart
Shutting down sendmail: [OK]
Shutting down sm-client: [OK]
Starting sendmail: [OK]
Starting sm-client: [OK]

Run chkconfig to cause the SpamAssassin daemon, spamd, to start when the system
enters multiuser mode (SpamAssassin is normally installed in this configuration):

/sbin/chkconfig spamassassin on

As with sendmail, SpamAssassin is normally running. Restart it to cause spamd to
reread its configuration files:

/sbin/service spamassassin restart
Stopping spamd: [OK]
Starting spamd: [OK]

The IMAP and POP protocols are implemented as several daemons. See page 647
for information on these daemons and how to start them.

Notes

Firewall An SMTP server normally uses TCP port 25. If the SMTP server system is running a
firewall, you need to open this port. Using the Red Hat graphical firewall tool
(page 768), select Mail (SMTP) from the Trusted Services frame to open this port.
For more general information see Chapter 25, which details iptables.

cyrus This chapter covers the IMAP and POP3 servers included in the dovecot package.
Red Hat Linux also provides IMAP and POP3 servers in the cyrus-imapd package.

630 Chapter 20 sendmail: Setting Up Mail Clients, Servers, and More

More Information

Web sendmail www.sendmail.org
IMAP www.imap.org
IMAP and POP3 www.dovecot.org
IMAP and POP3 cyrusimap.web.cmu.edu
SquirrelMail www.squirrelmail.org
Postfix www.postfix.org/docs.html (alternative MTA, page 652)
Qmail qmail.area.com
Mailman www.list.org
procmail www.procmail.org
SpamAssassin spamassassin.org
Spam database razor.sourceforge.net

JumpStart I: Configuring sendmail on a Client

This JumpStart configures an outbound sendmail server. This server

• Uses a remote SMTP server—typically an ISP—to relay outbound email to
its destination (an SMTP relay).

• Sends to the SMTP server email originating from the local system only. It
does not forward email originating from other systems.

• Does not handle inbound email. As is frequently the case, you need to use
POP or IMAP to receive email.

To set up this server, you must edit /etc/mail/sendmail.mc and restart sendmail.

Change
sendmail.mc

The dnl at the start of the following line in sendmail.mc indicates that this line is a
comment:

dnl define(‘SMART_HOST',‘smtp.your.provider')

To specify a remote SMTP server, you must open sendmail.mc in an editor and
change the preceding line, deleting dnl from the beginning of the line and replacing
smtp.your.provider with the FQDN of your ISP’s SMTP server (obtain this name
from your ISP). Be careful not to alter the back ticks (‘) and the single quotation
marks (') in this line. If your ISP’s SMTP server is at smtp.myisp.com, you would
change the line to

define(‘SMART_HOST',‘smtp.myisp.com')

You may not need to configure sendmail to send email

tip With sendmail running, give the command described under “Test” on page 631. As long as send-
mail can connect to port 25 outbound, you should not need to set up sendmail to use an SMTP
relay as described in this section. If you receive the mail sent by the test, you can skip this section.

JumpStart II: Configuring sendmail on a Server 631

Restart sendmail When you restart it, sendmail regenerates the sendmail.cf file from the sendmail.mc
file you edited:

/sbin/service sendmail restart

Test Test sendmail with the following command:

$ echo "my sendmail test" | /usr/sbin/sendmail user@remote.host

Replace user@remote.host with an email address on another system where you
receive email. You need to send email to a remote system to make sure that send-
mail is relaying your email.

JumpStart II: Configuring sendmail on a Server

If you want to receive inbound email sent to a registered domain that you own, you
need to set up sendmail as an incoming mail server. This JumpStart describes how to
set up such a server. This server

• Accepts outbound email from the local system only.

• Delivers outbound email directly to the recipient’s system, without using a
relay.

• Accepts inbound email from any system.

This server does not relay outbound email originating on other systems. Refer to
“access: Sets Up a Relay Host” on page 638 if you want the local system to act as a
relay. For this configuration to work, you must be able to make outbound connec-
tions from and receive inbound connections to port 25.

The line in sendmail.mc that limits sendmail to accepting inbound email from the
local system only is

DAEMON_OPTIONS(‘Port=smtp,Addr=127.0.0.1, Name=MTA')dnl

To allow sendmail to accept inbound email from other systems, remove the parame-
ter Addr=127.0.0.1, from the preceding line:

DAEMON_OPTIONS(‘Port=smtp, Name=MTA')dnl

By default, sendmail does not use a remote SMTP server to relay email, so there is
nothing to change to cause sendmail to send email directly to recipients’ systems.
(JumpStart I set up a SMART_HOST to relay email.)

Do not alter the back ticks (‘) or the single quotation marks (')

tip Be careful not to alter the back ticks (‘) or the single quotation marks (') in any line in send-
mail.mc. These symbols control the way the m4 preprocessor converts sendmail.mc to send-
mail.cf; sendmail will not work properly if you do not preserve these symbols.

632 Chapter 20 sendmail: Setting Up Mail Clients, Servers, and More

Once you have restarted sendmail, it will accept mail addressed to the local system,
as long as a DNS MX record (page 726) points at the local system. If you are not
running a DNS server, you must ask your ISP to set up an MX record.

How sendmail Works

Outbound email When you send email, the MUA passes the email to sendmail, which creates in the
/var/spool/mqueue (mail queue) directory two files that hold the message while
sendmail processes it. To create a unique filename for a particular piece of email,
sendmail generates a random string and uses that string in filenames pertaining to
the email. The sendmail daemon stores the body of the message in a file named df
(data file) followed by the generated string. It stores the headers and other informa-
tion in a file named qf (queue file) followed by the generated string.

If a delivery error occurs, sendmail creates a temporary copy of the message that it
stores in a file whose name starts with tf (temporary file) and logs errors in a file
whose name starts xf. Once an email has been sent successfully, sendmail removes
all files pertaining to that email from /var/spool/mqueue.

Incoming email By default, the MDA stores incoming messages in users’ files in the mail spool direc-
tory, /var/spool/mail, in mbox format. Within this directory, each user has a mail
file named with the user’s username. Mail remains in these files until it is collected,
typically by an MUA. Once an MUA collects the mail from the mail spool, the
MUA stores the mail as directed by the user, usually in the user’s home directory
hierarchy.

mbox versus
maildir

The mbox format stores all messages for a user in a single file. To prevent corrup-
tion, the file must be locked while a process is adding messages to or deleting mes-
sages from the file; you cannot delete a message at the same time the MTA is adding
messages. A competing format, maildir, stores each message in a separate file. This
format does not use locks, allowing an MUA to read and delete messages at the
same time as new mail is delivered. In addition, the maildir format is better able to
handle larger mailboxes. The downside is that the maildir format adds overhead
when you are using a protocol such as IMAP to check messages. The dovecot pack-
age supports both mbox and maildir formats. Qmail (page 652), a sendmail alter-
native, uses maildir-format mailboxes.

Mail logs

The sendmail daemon stores log messages in /var/log/maillog. Other mail servers,
such as the dovecot imap-login and pop3-login daemons, may also log information
to this file. Following is a sample log entry:

/var/log/maillog # cat /var/log/maillog
...
Mar 3 16:25:33 MACHINENAME sendmail[7225]: i23GPXvm007224:
to=<user@localhost.localdomain>, ctladdr=<root@localhost.localdomain>
(0/0), delay=00:00:00, xdelay=00:00:00, mailer=local, pri=30514,
dsn=2.0.0, stat=Sent

How sendmail Works 633

Each log entry starts with a timestamp, the name of the system sending the email,
the name of the mail server (sendmail), and a unique identification number. The
address of the recipient follows the to= label and the address of the sender follows
ctladdr=. Additional fields provide the name of the mailer and the time it took to
send the message. If a message is sent correctly, the stat= label is followed by Sent.

A message is marked Sent when sendmail sends it; Sent does not indicate that the
message has been delivered. If a message is not delivered because an error occurred
farther down the line, the sender usually receives an email saying that it was not
delivered and giving a reason why.

If you send and receive a lot of email, the maillog file can grow quite large. The syslog
logrotate (page 559) entry is set up to archive and rotate the maillog files regularly.

Aliases and Forwarding

Three files can forward email: .forward (page 634), aliases (discussed next), and
virtusertable (page 640). Table 20-1 on page 640 compares the three files.

/etc/aliases Most of the time when you send email, it goes to a specific person; the recipient,
user@system, maps to a specific, real user on the specified system. Sometimes you
may want email to go to a class of users and not to a specific recipient. Examples of
classes of users include postmaster, webmaster, root, and tech_support. Different
users may receive this email at different times or the email may be answered by a
group of users. You can use the /etc/aliases file to map inbound addresses to local
users, files, commands, and remote addresses.

Each line in /etc/aliases contains the name of a local pseudouser, followed by a
colon, whitespace, and a comma-separated list of destinations. The default installa-
tion includes a number of aliases that redirect messages for certain pseudousers to
root. These have the form

system: root

Sending messages to the root account is a good way of making them easy to review.
However, because root’s email is rarely checked, you may want to send copies to a
real user. The following line forwards mail sent to abuse on the local system to root
and alex:

abuse: root, alex

You can create simple mailing lists with this type of alias. For example, the follow-
ing alias sends copies of all email sent to admin on the local system to several users,
including Zach, who is on a different system:

admin: sam, helen, mark, zach@tcorp.com

You can direct email to a file by specifying an absolute pathname in place of a desti-
nation address. The following alias, which is quite popular among less conscien-
tious system administrators, redirects email sent to complaints to /dev/null
(page 448), where they disappear:

complaints: /dev/null

634 Chapter 20 sendmail: Setting Up Mail Clients, Servers, and More

You can also send email to standard input of a command by preceding the com-
mand with a pipe character (|). This technique is commonly used with mailing list
software such as Mailman (page 646). For each list it maintains, Mailman has
entries, such as the following entry for mylist, in the aliases file:

mylist: "|/usr/lib/mailman/mail/mailman post mylist"

newaliases After you edit /etc/aliases, you must either run newaliases as root or restart send-
mail to recreate the aliases.db file that sendmail reads.

praliases You can use praliases to list aliases currently loaded by sendmail:

/usr/sbin/praliases | head -5
postmaster:root
daemon:root
adm:root
lp:root
shutdown:root

~/.forward Systemwide aliases are useful in many cases, but nonroot users cannot make or
change them. Sometimes you may want to forward your own mail: Maybe you want
mail from several systems to go to one address or perhaps you just want to forward
your mail while you are working at another office for a week. The ~/.forward file
allows ordinary users to forward their email.

Lines in a .forward file are the same as the right column of the aliases file explained
previously: Destinations are listed one per line and can be a local user, a remote
email address, a filename, or a command preceded by a pipe character (|).

Mail that you forward does not go to your local mailbox. If you want to forward
mail and keep a copy in your local mailbox, you must specify your local username
preceded by a backslash to prevent an infinite loop. The following example sends
Sam’s email to himself on the local system and on the system at tcorp.com:

$cat ~sam/.forward
sams@tcorp.com
\sam

Related Programs

sendmail The sendmail package includes several programs. The primary program, sendmail,
reads from standard input and sends an email to the recipient specified by its argu-
ment. You can use sendmail from the command line to check that the mail delivery
system is working and to email the output of scripts. See page 631 for an example.

mailq The mailq utility displays the status of the outgoing mail queue and normally reports
there are no messages in the queue. Messages in the queue usually indicate a prob-
lem with the local or remote sendmail configuration or a network problem.

/usr/bin/mailq
/var/spool/mqueue is empty
 Total requests: 0

mailstats The mailstats utility reports on the number and sizes of messages sendmail has sent
and received since the date it displays on the first line:

Configuring sendmail 635

/usr/sbin/mailstats
Statistics from Sat Dec 24 16:02:34 2005
M msgsfr bytes_from msgsto bytes_to msgsrej msgsdis Mailer
0 0 0K 17181 103904K 0 0 prog
4 368386 4216614K 136456 1568314K 20616 0 esmtp
9 226151 26101362K 479025 12776528K 4590 0 local
==
T 594537 30317976K 632662 14448746K 25206 0
C 694638 499700 146185

In the preceding output, each mailer is identified by the first column, which displays
the mailer number, and by the last column, which displays the name of the mailer.
The second through fifth columns display the number and total sizes of messages
sent and received by the mailer. The sixth and seventh columns display the number
of messages rejected and discarded respectively. The row that starts with T lists the
column totals, and the row that starts with C lists the number of TCP connections.

Configuring sendmail
The sendmail configuration files reside in /etc/mail, where the primary configura-
tion file is sendmail.cf. This directory contains other text configuration files, such as
access, mailertable, and virtusertable. The sendmail daemon does not read these
files but instead reads the corresponding *.db files in the same directory.

makemap You can use makemap or give the command make from the /etc/mail directory to
generate the *.db files, although this step is not usually necessary. The sendmail init
script automatically generates these files when you start or restart sendmail:

/sbin/service sendmail restart

The sendmail.mc and sendmail.cf Files

This sendmail.cf file is not intended to be edited by hand and contains a large warn-
ing to this effect:

$ cat /etc/mail/sendmail.cf
...
##
#####
DO NOT EDIT THIS FILE! Only edit the source .mc file.
#####
##
...

Editing sendmail.mc and Generating sendmail.cf
The sendmail.cf file is generated from sendmail.mc using the m4 macro processor. It
can be helpful to use a text editor that supports syntax highlighting, such as vim, to
edit sendmail.mc.

636 Chapter 20 sendmail: Setting Up Mail Clients, Servers, and More

dnl Many of the lines in sendmail.mc start with dnl, which stands for delete to new line;
this token causes m4 to delete from the dnl to the end of the line (the next NEWLINE

character). Because m4 ignores anything on a line after a dnl instruction, you can
use dnl to introduce comments; it works the same way as # does in a shell script.

Many of the lines in sendmail.mc end with dnl. Because NEWLINEs immediately follow
these dnls, these dnls are superfluous; you can remove them if you like.

After you edit sendmail.mc, you need to regenerate sendmail.cf to make your
changes take effect. When you restart sendmail, the sendmail init script regenerates
sendmail.cf.

About sendmail.mc
Lines near the beginning of sendmail.mc provide basic configuration information:

divert(-1)dnl
include(‘/usr/share/sendmail-cf/m4/cf.m4')dnl
VERSIONID(‘setup for Red Hat Linux')dnl
OSTYPE(‘linux')dnl

The line that starts with divert tells m4 to discard extraneous output it may generate
when processing this file.

The include statement tells m4 where to find the macro definition file that it will
use to process the rest of this file; it points to the file named cf.m4. The cf.m4 file
contains other include statements that include parts of the sendmail configuration
rule sets.

The VERSIONID statement defines a string that indicates the version of this config-
uration. You can change this string to include a brief comment about changes you
have made to this file or other information. The value of this string is not significant
to sendmail.

Do not change the OSTYPE statement unless you are migrating a sendmail.mc file
from another operating system.

Other statements you may want to change are explained in the following sections
and in the sendmail documentation.

Masquerading

Typically you want your email to appear to come from the user and the domain
where you receive email; sometimes the outbound server is in a different domain
than the inbound server. You can cause sendmail to alter outbound messages so that
they appear to come from a user and/or domain other than the one they are sent
from: In other words, you masquerade (page 1042) the message.

Quoting m4 strings

tip The m4 macro processor, which converts sendmail.mc to sendmail.cf, requires strings to be
preceded by a back tick (‘) and closed with a single quotation mark (').

Configuring sendmail 637

Several lines in sendmail.mc pertain to this type of masquerading. Each is com-
mented out in the file that Red Hat distributes:

dnl MASQUERADE_AS(‘mydomain.com')dnl
dnl MASQUERADE_DOMAIN(localhost)dnl
dnl FEATURE(masquerade_entire_domain)dnl

The MASQUERADE_AS statement causes email that you send from the local sys-
tem to appear to come from the specified domain (mydomain.com in the com-
mented-out line in the distributed file). Remove the leading dnl and change
mydomain.com to the domain name that you want mail to appear to come from.

The MASQUERADE_DOMAIN statement causes email from the specified system or
domain to be masqueraded, just as local email is. That is, email from the system spec-
ified in this statement is treated as though it came from the local system: It is changed
so that it appears to come from the domain specified in the MASQUERADE_AS
statement. Remove the leading dnl and change localhost to the name of the system or
domain that sends the email that you want to masquerade. If the name you specify has
a leading period, it specifies a domain. If there is no leading period, the name specifies a
system or host. The sendmail.mc file can include as many MASQUERADE_DOMAIN
statements as necessary.

The masquerade_entire_domain feature statement causes sendmail also to masquer-
ade subdomains of the domain specified in the MASQUERADE_DOMAIN state-
ment. Remove the leading dnl to masquerade entire domains.

Accepting Email from Unknown Hosts

As configured by Red Hat, sendmail accepts email from domains that it cannot
resolve (and that may not exist). To turn this feature off and cut down the amount
of spam you receive, add dnl to the beginning of the following line:

FEATURE(‘accept_unresolvable_domains')dnl

When this feature is off, sendmail uses DNS to look up the domains of all email it
receives. If it cannot resolve the domain, it rejects the email.

Setting Up a Backup Server

You can set up a backup mail server to hold email when the primary mail server
experiences problems. For maximum coverage, the backup server should be on a
different connection to the Internet from the primary server.

Setting up a backup server is easy. Just remove the leading dnl from the following
line in the backup mail server’s sendmail.mc file:

dnl FEATURE(‘relay_based_on_MX')dnl

DNS MX records (page 726) specify where email for a domain should be sent. You
can have multiple MX records for a domain, each pointing to a different mail
server. When a domain has multiple MX records, each record usually has a different

638 Chapter 20 sendmail: Setting Up Mail Clients, Servers, and More

priority; the priority is specified by a two-digit number, where lower numbers spec-
ify higher priorities.

When attempting to deliver email, an MTA first tries to deliver email to the highest-
priority server. If that delivery attempt fails, it tries to deliver to a lower-priority
server. If you activate the relay_based_on_MX feature and point a low-priority MX
record at a secondary mail server, the mail server will accept email for the domain.
The mail server will then forward email to the server identified by the highest-
priority MX record for the domain when that server becomes available.

877877

EX
CER

PT
28Chapter28Chapter 7 introduced the shells and Chapter 9 went into detail
about the Bourne Again Shell. This chapter introduces addi-
tional Bourne Again Shell commands, builtins, and concepts
that carry shell programming to a point where it can be useful.
The first part of this chapter covers programming control struc-
tures, which are also known as control flow constructs. These
structures allow you to write scripts that can loop over com-
mand line arguments, make decisions based on the value of a
variable, set up menus, and more. The Bourne Again Shell uses
the same constructs found in such high-level programming lan-
guages as C.

The next part of this chapter discusses parameters and vari-
ables, going into detail about array variables, local versus glo-
bal variables, special parameters, and positional parameters.
The exploration of builtin commands covers type, which dis-
plays information about a command, and read, which allows
you to accept user input in a shell script. The section on the
exec builtin demonstrates how exec provides an efficient way to
execute a command by replacing a process and explains how

In This Chapter

Control Structures 878

File Descriptors 911

Parameters and Variables 914

Array Variables 914

Locality of Variables 916

Special Parameters. 918

Positional Parameters. 920

Builtin Commands 926

Expressions 940

Shell Programs 948

A Recursive Shell Script 949

The quiz Shell Script. 952

28

Programming the

Bourne Again Shell

878 Chapter 28 Programming the Bourne Again Shell

you can use it to redirect input and output from within a script. The next section
covers the trap builtin, which provides a way to detect and respond to operating sys-
tem signals (such as that which is generated when you press CONTROL-C). The discus-
sion of builtins concludes with a discussion of kill, which can abort a process, and
getopts, which makes it easy to parse options for a shell script. (Table 28-6 on
page 939 lists some of the more commonly used builtins.)

Next the chapter examines arithmetic and logical expressions and the operators
that work with them. The final section walks through the design and implementa-
tion of two major shell scripts.

This chapter contains many examples of shell programs. Although they illustrate
certain concepts, most use information from earlier examples as well. This overlap
not only reinforces your overall knowledge of shell programming but also demon-
strates how you can combine commands to solve complex tasks. Running, modify-
ing, and experimenting with the examples in this book is a good way to become
comfortable with the underlying concepts.

This chapter illustrates concepts with simple examples, which are followed by more
complex ones in sections marked “Optional.” The more complex scripts illustrate
traditional shell programming practices and introduce some Linux utilities often
used in scripts. You can skip these sections without loss of continuity the first time
you read the chapter. Return to them later when you feel comfortable with the basic
concepts.

Control Structures

The control flow commands alter the order of execution of commands within a shell
script. Control structures include the if...then, for...in, while, until, and case state-
ments. In addition, the break and continue statements work in conjunction with the
control structures to alter the order of execution of commands within a script.

if...then

The if...then control structure has the following syntax:

if test-command
then

commands
fi

Do not name a shell script test
tip You can unwittingly create a problem if you give a shell script the name test because a Linux utility

has the same name. Depending on how the PATH variable is set up and how you call the program,
you may run your script or the utility, leading to confusing results.

Control Structures 879

The bold words in the syntax description are the items you supply to cause the
structure to have the desired effect. The nonbold words are the keywords the shell
uses to identify the control structure.

test builtin Figure 28-1 shows that the if statement tests the status returned by the test-command
and transfers control based on this status. The end of the if structure is marked
by a fi statement, (if spelled backward). The following script prompts for two
words, reads them, and then uses an if structure to execute commands based on
the result returned by the test builtin when it compares the two words. (See the
test info page for information on the test utility, which is similar to the test
builtin.) The test builtin returns a status of true if the two words are the same and
false if they are not. Double quotation marks around $word1 and $word2 make
sure that test works properly if you enter a string that contains a SPACE or other
special character:

$ cat if1
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2

if test "$word1" = "$word2"
then

echo "Match"
fi
echo "End of program."

Figure 28-1 An if...then flowchart

then
commands

fi

if
test-command

True

False

880 Chapter 28 Programming the Bourne Again Shell

$ if1
word 1: peach
word 2: peach
Match
End of program.

In the preceding example the test-command is test "$word1" = "$word2". The test
builtin returns a true status if its first and third arguments have the relationship
specified by its second argument. If this command returns a true status (= 0), the
shell executes the commands between the then and fi statements. If the command
returns a false status (not = 0), the shell passes control to the statement following fi
without executing the statements between then and fi. The effect of this if statement
is to display Match if the two words are the same. The script always displays End of
program.

Builtins In the Bourne Again Shell, test is a builtin—part of the shell. It is also a stand-alone
utility kept in /usr/bin/test. This chapter discusses and demonstrates many Bourne
Again Shell builtins. You usually use the builtin version if it is available and the util-
ity if it is not. Each version of a command may vary slightly from one shell to the
next and from the utility to any of the shell builtins. See page 926 for more informa-
tion on shell builtins.

Checking arguments The next program uses an if structure at the beginning of a script to check that you
have supplied at least one argument on the command line. The –eq test operator
compares two integers, where the $# special parameter (page 921) takes on the
value of the number of command line arguments. This structure displays a message
and exits from the script with an exit status of 1 if you do not supply at least one
argument:

$ cat chkargs
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
echo "Program running."
$ chkargs
You must supply at least one argument.
$ chkargs abc
Program running.

A test like the one shown in chkargs is a key component of any script that
requires arguments. To prevent the user from receiving meaningless or confusing
information from the script, the script needs to check whether the user has sup-
plied the appropriate arguments. Sometimes the script simply tests whether argu-
ments exist (as in chkargs). Other scripts test for a specific number or specific
kinds of arguments.

You can use test to ask a question about the status of a file argument or the relation-
ship between two file arguments. After verifying that at least one argument has been
given on the command line, the following script tests whether the argument is the

Control Structures 881

name of an ordinary file (not a directory or other type of file) in the working direc-
tory. The test builtin with the –f option and the first command line argument ($1)
check the file:

$ cat is_ordfile
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
if test -f "$1"

then
echo "$1 is an ordinary file in the working directory"

else
echo "$1 is NOT an ordinary file in the working directory"

fi

You can test many other characteristics of a file with test and various options.
Table 28-1 lists some of these options.

Other test options provide ways to test relationships between two files, such as
whether one file is newer than another. Refer to later examples in this chapter for
more detailed information.

[] is a synonym
for test

The following example—another version of chkargs—checks for arguments in a
way that is more traditional for Linux shell scripts. The example uses the bracket
([]) synonym for test. Rather than using the word test in scripts, you can surround
the arguments to test with brackets. The brackets must be surrounded by
whitespace (SPACEs or TABs).

Table 28-1 Options to the test builtin

Option Tests file to see if it

–d Exists and is a directory file

–e Exists

–f Exists and is an ordinary file (not a directory)

–r Exists and is readable

–s Exists and has a size greater than 0 bytes

–w Exists and is writable

–x Exists and is executable

Always test the arguments

tip To keep the examples in this book short and focused on specific concepts, the code to verify argu-
ments is often omitted or abbreviated. It is a good practice to test arguments in shell programs
that other people will use. Doing so results in scripts that are easier to run and debug.

882 Chapter 28 Programming the Bourne Again Shell

$ cat chkargs2
if [$# -eq 0]

then
echo "Usage: chkargs2 argument..." 1>&2
exit 1

fi
echo "Program running."
exit 0
$ chkargs2
Usage: chkargs2 arguments
$ chkargs2 abc
Program running.

Usage message The error message that chkargs2 displays is called a usage message and uses the
1>&2 notation to redirect its output to standard error (page 270). After issuing the
usage message, chkargs2 exits with an exit status of 1, indicating that an error has
occurred. The exit 0 command at the end of the script causes chkargs2 to exit with
a 0 status after the program runs without an error. The Bourne Again Shell returns a
0 status if you omit the status code.

The usage message is commonly employed to specify the type and number of argu-
ments the script takes. Many Linux utilities provide usage messages similar to the
one in chkargs2. If you call a utility or other program with the wrong number or
kind of arguments, you will often see a usage message. Following is the usage mes-
sage that cp displays when you call it without any arguments:

$ cp
cp: missing file argument
Try 'cp --help' for more information.

if...then...else

The introduction of an else statement turns the if structure into the two-way branch
shown in Figure 28-2. The if...then...else control structure has the following syntax:

if test-command
then

commands
else

commands
fi

Because a semicolon (;) ends a command just as a NEWLINE does, you can place then on
the same line as if by preceding it with a semicolon. (Because if and then are sepa-
rate builtins, they require a command separator between them; a semicolon and
NEWLINE work equally well.) Some people prefer this notation for aesthetic reasons,
while others like it because it saves space:

if test-command; then
commands

else
commands

fi

Control Structures 883

If the test-command returns a true status, the if structure executes the commands
between the then and else statements and then diverts control to the statement fol-
lowing fi. If the test-command returns a false status, the if structure executes the
commands following the else statement.

When you run the next script, named out, with arguments that are filenames, it dis-
plays the files on the terminal. If the first argument is –v (called an option in this
case), out uses less (page 128) to display the files one page at a time. After determin-
ing that it was called with at least one argument, out tests its first argument to see
whether it is –v. If the result of the test is true (if the first argument is –v), out uses
the shift builtin to shift the arguments to get rid of the –v and displays the files using
less. If the result of the test is false (if the first argument is not –v), the script uses cat
to display the files:

$ cat out
if [$# -eq 0]

then
echo "Usage: out [-v] filenames..." 1>&2
exit 1

fi
if ["$1" = "-v"]

then
shift
less -- "$@"

else
cat -- "$@"

fi

Figure 28-2 An if ...then...else flowchart

fi

if
test-commandTrue False

else
commands

then
commands

884 Chapter 28 Programming the Bourne Again Shell

optional In out the –– argument to cat and less tells these utilities that no more options fol-
low on the command line and not to consider leading hyphens (–) in the following
list as indicating options. Thus –– allows you to view a file with a name that starts
with a hyphen. Although not common, filenames beginning with a hyphen do occa-
sionally occur. (You can create such a file by using the command cat > –fname.) The
–– argument works with all Linux utilities that use the getopts builtin (page 936) to
parse their options; it does not work with more and a few other utilities. This argu-
ment is particularly useful when used in conjunction with rm to remove a file whose
name starts with a hyphen (rm –– –fname), including any that you create while
experimenting with the –– argument.

Figure 28-3 An if ...then...elif flowchart

fi

if
test-command

True False

else
commands

then
commands elif

test-commandTrue False

then
commands

Control Structures 885

if...then...elif
The if...then...elif control structure (Figure 28-3) has the following syntax:

if test-command
then

commands
elif test-command

then
commands

. . .
else

commands
fi

The elif statement combines the else statement and the if statement and allows you
to construct a nested set of if...then...else structures (Figure 28-3). The difference
between the else statement and the elif statement is that each else statement must be
paired with a fi statement, whereas multiple nested elif statements require only a sin-
gle closing fi statement.

The following example shows an if...then...elif control structure. This shell script
compares three words that the user enters. The first if statement uses the Boolean
operator AND (–a) as an argument to test. The test builtin returns a true status only
if the first and second logical comparisons are true (that is, if word1 matches word2
and word2 matches word3). If test returns a true status, the script executes the com-
mand following the next then statement, passes control to the statement following
fi, and terminates:

$ cat if3
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2
echo -n "word 3: "
read word3

if ["$word1" = "$word2" -a "$word2" = "$word3"]
then

echo "Match: words 1, 2, & 3"
elif ["$word1" = "$word2"]
then

echo "Match: words 1 & 2"
elif ["$word1" = "$word3"]
then

echo "Match: words 1 & 3"
elif ["$word2" = "$word3"]
then

echo "Match: words 2 & 3"
else

echo "No match"
fi

886 Chapter 28 Programming the Bourne Again Shell

$ if3
word 1: apple
word 2: orange
word 3: pear
No match
$ if3
word 1: apple
word 2: orange
word 3: apple
Match: words 1 & 3
$ if3
word 1: apple
word 2: apple
word 3: apple
Match: words 1, 2, & 3

If the three words are not the same, the structure passes control to the first elif,
which begins a series of tests to see if any pair of words is the same. As the nesting
continues, if any one of the if statements is satisfied, the structure passes control
to the next then statement and subsequently to the statement following fi. Each
time an elif statement is not satisfied, the structure passes control to the next elif
statement. The double quotation marks around the arguments to echo that con-
tain ampersands (&) prevent the shell from interpreting the ampersands as special
characters.

optional The lnks Script

The following script, named lnks, demonstrates the if...then and if...then...elif con-
trol structures. This script finds hard links to its first argument, a filename. If you
provide the name of a directory as the second argument, lnks searches for links in
that directory and all subdirectories. If you do not specify a directory, lnks
searches the working directory and its subdirectories. This script does not locate
symbolic links.

$ cat lnks
#!/bin/bash
Identify links to a file
Usage: lnks file [directory]

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi
if [-d "$1"]; then

echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

Control Structures 887

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Check that file exists and is an ordinary file:
if [! -f "$file"]; then

echo "lnks: $file not found or special file" 1>&2
exit 1

fi
Check link count on file
set -- $(ls -l "$file")
linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

Get the inode of the given file
set $(ls -i "$file")

inode=$1

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

Alex has a file named letter in his home directory. He wants to find links to this file
in his and other users’ home directory file trees. In the following example, Alex
calls lnks from his home directory to perform the search. The second argument to
lnks, /home, is the pathname of the directory he wants to start the search in. The
lnks script reports that /home/alex/letter and /home/jenny/draft are links to the
same file:

$ lnks letter /home
lnks: using find to search for links...
/home/alex/letter
/home/jenny/draft

In addition to the if...then...elif control structure, lnks introduces other features that
are commonly used in shell programs. The following discussion describes lnks sec-
tion by section.

Specify the shell The first line of the lnks script uses #! (page 274) to specify the shell that will exe-
cute the script:

#!/bin/bash

888 Chapter 28 Programming the Bourne Again Shell

In this chapter the #! notation appears only in more complex examples. It ensures
that the proper shell executes the script, even when the user is running a different
shell or the script is called from another shell script.

Comments The second and third lines of lnks are comments; the shell ignores the text that fol-
lows a pound sign up to the next NEWLINE character. These comments in lnks briefly
identify what the file does and how to use it:

Identify links to a file
Usage: lnks file [directory]

Usage messages The first if statement tests whether lnks was called with zero arguments or more
than two arguments:

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

If either of these conditions is true, lnks sends a usage message to standard error
and exits with a status of 1. The double quotation marks around the usage message
prevent the shell from interpreting the brackets as special characters. The brackets
in the usage message indicate that the directory argument is optional.

The second if statement tests whether the first command line argument ($1) is a
directory (the –d argument to test returns a true value if the file exists and is a
directory):

if [-d "$1"]; then
echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

If the first argument is a directory, lnks displays a usage message and exits. If it is
not a directory, lnks saves the value of $1 in the file variable because later in the
script set resets the command line arguments. If the value of $1 is not saved before
the set command is issued, its value will be lost.

Test the arguments The next section of lnks is an if...then...elif statement:

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Control Structures 889

The first test-command determines whether the user specified a single argument on
the command line. If the test-command returns 0 (true), the user-created variable
named directory is assigned the value of the working directory (.). If the test-com-
mand returns false, the elif statement tests whether the second argument is a direc-
tory. If it is a directory, the directory variable is set equal to the second command
line argument, $2. If $2 is not a directory, lnks sends a usage message to standard
error and exits with a status of 1.

The next if statement in lnks tests whether $file does not exist. This test keeps lnks
from wasting time looking for links to a nonexistent file.

The test builtin with the three arguments !, –f, and $file evaluates to true if the file
$file does not exist:

[! -f "$file"]

The ! operator preceding the –f argument to test negates its result, yielding false if
the file $file does exist and is an ordinary file.

Next lnks uses set and ls –l to check the number of links $file has:

Check link count on file
set -- $(ls -l "$file")
linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

The set builtin uses command substitution (page 334) to set the positional parame-
ters to the output of ls –l. The second field in this output is the link count, so the
user-created variable linkcnt is set equal to $2. The –– used with set prevents set
from interpreting as an option the first argument produced by ls –l (the first argu-
ment is the access permissions for the file and typically begins with –). The if state-
ment checks whether $linkcnt is equal to 1; if it is, lnks displays a message and
exits. Although this message is not truly an error message, it is redirected to stan-
dard error. The way lnks has been written, all informational messages are sent to
standard error. Only the final product of lnks—the pathnames of links to the speci-
fied file—is sent to standard output, so you can redirect the output as you please.

If the link count is greater than one, lnks goes on to identify the inode (page 1037)
for $file. As explained on page 193, comparing the inodes associated with filenames
is a good way to determine whether the filenames are links to the same file. The lnks
script uses set to set the positional parameters to the output of ls –i. The first argu-
ment to set is the inode number for the file, so the user-created variable named
inode is assigned the value of $1:

Get the inode of the given file
set $(ls -i "$file")

inode=$1

890 Chapter 28 Programming the Bourne Again Shell

Finally lnks uses the find utility to search for files having inode numbers that match
$inode:

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

The find utility searches for files that meet the criteria specified by its arguments,
beginning its search with the directory specified by its first argument ($directory)
and searching all subdirectories. The remaining arguments specify that the file-
names of files having inodes matching $inode should be sent to standard output.
Because files in different filesystems can have the same inode number and not be
linked, find must search only directories in the same filesystem as $directory. The
–xdev argument prevents find from searching directories on other filesystems. Refer
to page 190 for more information about filesystems and links.

The echo command preceding the find command in lnks, which tells the user that
find is running, is included because find frequently takes a long time to run. Because
lnks does not include a final exit statement, the exit status of lnks is that of the last
command it runs, find.

Debugging Shell Scripts

When you are writing a script such as lnks, it is easy to make mistakes. You can use
the shell’s –x option to help debug a script. This option causes the shell to display
each command before it runs the command. Tracing a script’s execution in this way
can give you information about where a problem lies.

You can run lnks as in the previous example and cause the shell to display each
command before it is executed. Either set the –x option for the current shell (set –x)
so that all scripts display commands as they are run or use the –x option to affect
only the shell that is running the script called by the command line.

$ bash -x lnks letter /home
+ '[' 2 -eq 0 -o 2 -gt 2 ']'
+ '[' -d letter ']'
+ file=letter
+ '[' 2 -eq 1 ']'
+ '[' -d /home ']'
+ directory=/home
+ '[' '!' -f letter ']'
...

PS4 Each command that the script executes is preceded by the value of the PS4 vari-
able—a plus sign (+) by default, so you can distinguish debugging output from
script-produced output. You must export PS4 if you set it in the shell that calls the
script. The next command sets PS4 to >>>> followed by a SPACE and exports it:

$ export PS4='>>>> '

Control Structures 891

You can also set the –x option of the shell running the script by putting the follow-
ing set command at the top of the script:

set -x

Put set –x anywhere in the script you want to turn debugging on. Turn the debug-
ging option off with a plus sign.

set +x

The set –o xtrace and set +o xtrace commands do the same things as set –x and set
+x, respectively.

for...in

The for...in control structure has the following syntax:

for loop-index in argument-list
do

commands
done

Figure 28-4 A for...in flowchart

Assign next
argument in
argument-list
to loop-index

do

commands

Another
argument in
argument-list

done

Yes

No

?

892 Chapter 28 Programming the Bourne Again Shell

The for...in structure (Figure 28-4) assigns the value of the first argument in the argu-
ment-list to the loop-index and executes the commands between the do and done
statements. The do and done statements mark the beginning and end of the for loop.

After it passes control to the done statement, the structure assigns the value of the
second argument in the argument-list to the loop-index and repeats the commands.
The structure repeats the commands between the do and done statements one time
for each argument in the argument-list. When the structure exhausts the argument-
list, it passes control to the statement following done.

The following for...in structure assigns apples to the user-created variable fruit and
then displays the value of fruit, which is apples. Next the structure assigns oranges
to fruit and repeats the process. When it exhausts the argument list, the structure
transfers control to the statement following done, which displays a message.

$ cat fruit
for fruit in apples oranges pears bananas
do

echo "$fruit"
done
echo "Task complete."

$ fruit
apples
oranges
pears
bananas
Task complete.

The next script lists the names of the directory files in the working directory by
looping over all the files, using test to determine which files are directories:

$ cat dirfiles
for i in *
do

if [-d "$i"]
then

echo "$i"
fi

done

The ambiguous file reference character * matches the names of all files (except hid-
den files) in the working directory. Prior to executing the for loop, the shell expands
the * and uses the resulting list to assign successive values to the index variable i.

for
The for control structure has the following syntax:

for loop-index
do

commands
done

Control Structures 893

In the for structure the loop-index takes on the value of each of the command line
arguments, one at a time. It is the same as the for...in structure (Figure 28-4) except
for where it gets values for the loop-index. The for structure performs a sequence of
commands, usually involving each argument in turn.

The following shell script shows a for structure displaying each command line argu-
ment. The first line of the script, for arg, implies for arg in "$@", where the shell
expands "$@" into a list of quoted command line arguments "$1" "$2" "$3" and
so on. The balance of the script corresponds to the for...in structure.

$ cat for_test
for arg
do

echo "$arg"
done
$ for_test candy gum chocolate
candy
gum
chocolate

