
1

Answers to Even-
Numbered Exercises 15
from page 833

1. The dirname utility treats its argument as a pathname and writes to
standard output the path prefix, that is, everything up to but not including
the last component. Thus

dirname a/b/c/d

writes a/b/c to standard output. If path is a simple filename (has no /
characters), dirname writes a . to standard output.

Implement dirname as a Z Shell function. Make sure that it behaves
sensibly when given such arguments as /.

2. Implement the basename utility, which writes the last component of its
pathname argument to standard output, as a Z Shell function. For
example,

zsh % basename a/b/c/d

writes d to standard output.

The following function is named bn so that you know that you are not
running the /bin/basename utility. It behaves the same way as basename.

2 Chapter 15 Answers to Exercises

% function bn {
function> export argone=$1
function>
function> if [$# = 0]
function if> then
function then> exit 1
function then> elif ["$1" = "/"]
function elif> then
function elif-then> echo /
function elif-then> else
function else> echo $1 | sed 's:.*/::'
function else> fi
function> }

3. The GNU/Linux basename utility has an optional second argument. If you
type

basename path suffix

basename removes the suffix from path after removing the prefix. For
example,

zsh % basename src/shellfiles/prog.bash .bash
prog
zsh % basename src/shellfiles/prog.bash .c
prog.bash

Add this feature to the function you wrote for exercise 2.

4. Write a Z Shell function that takes a directory name as an argument and
writes to standard output the maximum of the lengths of all filenames in
that directory. If the function’s argument is not a directory name, write an
error message to standard output and exit with nonzero status.

% function maxfn {
function> integer max thisone
function>
function> if [! -d $1 -o $# = 0]
function if> then
function then> echo "Usage: maxfn dirname"
function then> return 1
function then> fi
function>
function> max=0
function> for fn in $(/bin/ls $1)
function for> do
function for> thisone=${#fn}
function for> if [$thisone -gt $max]
function for if> then
function for then> max=$thisone
function for then> fi
function for> one
function> echo "Longest filename is $max characters."
function> }

Chapter 15 Answers to Exercises 3

5. Modify the function you wrote for exercise 4 to descend all subdirectories
of the named directory recursively and to find the maximum length of any
filename in that hierarchy.

6. Write a Z Shell function that lists the number of regular files, directories,
block special files, character special files, FIFOs, and symbolic links in the
working directory. Do this in two different ways:

a. Use the first letter of the output of ls –l to determine a file’s type.

% function ft {
function> integer reg dir blk char fifo symlnk other
function>
function> for fn in $(ls)
function for> do
function for> case $(ls -l $fn | cut -b1) in
function for case> d)
function for case> ((dir=$dir+1))
function for case> ;;
function for case> b)
function for case> ((blk=$blk+1))
function for case> ;;
function for case> c)
function for case> ((char=$char+1))
function for case> ;;
function for case> p)
function for case> ((fifo=$fifo+1))
function for case> ;;
function for case> l)
function for case> ((symlnk=$symlnk+1))
function for case> ;;
function for case> a-z)
function for case> ((other=other+1))
function for case> ;;
function for case> *)
function for case> ((reg=reg+1))
function for case> ;;
function for case> esac
function for> done
function>
function> echo $reg regular
function> echo $dir directory
function> echo $blk block
function> echo $char character
function> echo $fifo FIFO
function> echo $symlnk symbolic link
function> echo $other other
function> }

b. Use the file type condition tests of the [[builtin to determine a file’s type.
Note: As of zsh 4.0.4 (distributed with Red Hat 8) a –d test for a

4 Chapter 15 Answers to Exercises

directory returns true for a symbolic link, thus the test for a symbolic
link is moved to the beginning of the tests.

% function ft2 {
function> integer reg dir blk char fifo symlnk other
function>
function> for fn in $(ls)
function for> do
function for> if [[-h $fn]]
function for if> then ((symlnk=$symlnk+1))
function for then> elif [[-f $fn]]
function for elif> then ((reg=reg+1))
function for elif-then> elif [[-d $fn]]
function for elif> then ((dir=$dir+1))
function for elif-then> elif [[-b $fn]]
function for elif> then ((blk=$blk+1))
function for elif-then> elif [[-c $fn]]
function for elif> then ((char=$char+1))
function for elif-then> elif [[-p $fn]]
function for elif> then ((fifo=$fifo+1))
function for elif-then> elif [[-q $fn]]
function for elif> then ((other=other+1))
function for elif-then> fi
function for> done
function>
function> echo $reg regular
function> echo $dir directory
function> echo $blk block
function> echo $char character
function> echo $fifo FIFO
function> echo $symlnk symbolic link
function> echo $other other
function> }

7. The makercs program (page 812) depends on the fact that find writes the
pathname of a directory before writing the pathname of any files in that
directory. Suppose that this were not reliably true. Fix makercs.

8. Change makercs (page 812) so that if any call to ci fails, the program
continues (as it does now) but eventually exits with nonzero status.

Before the line checkargs "$@" initialize the retflg variable to zero:

retflg=0

Change the ci command to

ci -l -q "-t-$pathname" "$pathname" "$target" >&4 2>&3 ||
 (print -u3 "Cannot create $target" && retflg=1)

Finally, change the exit command to

exit $retflg

Chapter 15 Answers to Exercises 5

9. Modify the quiz program (page 816) so that the choices for a question are
also randomly arranged.

10. In the makercs (page 812) program, file descriptors 3 and 4 are opened;
during the loop, output is directed to these descriptors. An alternative
method would be simply to append the output each time it occurs, using,
for example,

print "Cannot create $target" >> $ERRS

rather than

print –u3 "Cannot create $target"

What is the difference? Why does it matter?

Redirecting the output opens the file (descriptor), writes to the file, and
closes the file (descriptor). Opening a file descriptor at the start of a
program, writing to it as needed, and closing it when the program finishes
is more efficient than the first method, especially when you write to the file
many times.

11. The check in makercs (page 812) to prevent you from copying hierarchies
on top of each other is simplistic. For example, if you are in your home
directory, the call makercs . ~/work/RCS will not detect that the source
and target directories lie on the same path. Fix this check.

12. In principle, recursion is never necessary. It can always be replaced by an
iterative construct, such as while or until. Rewrite makepath (page 809) as
a nonrecursive function. Which version do you prefer? Why?

makepath2()
{
wd=$(pwd)
pathname=$1

while [[$pathname = */* && ${#pathname} > 0]]
 do
 if [[! -d $pathname]]
 then
 mkdir "${pathname%%/*}"
 fi
 cd "${pathname%%/*}"

Advanced Exercises
Advanced Exercises

6 Chapter 15 Answers to Exercises

 pathname="${pathname#*/}"
 done
if [[! -d $pathname && ${#pathname} > 0]]
 then
 mkdir $pathname
fi
cd $wd
}

The recursive version is simpler: There is no need to keep track of the
working directory and you do not have to take care of making the final
directory separately.

13. Lists are commonly stored in environment variables by putting a colon (:)
between each of the list elements. (The value of the PATH variable is a
good example.) You can add an element to such a list by catenating the
new element to the front of the list, as in

PATH=/opt/bin:$PATH

If the element you add is already in the list, you now have two copies of it
in the list. Write a Z Shell function, addenv that takes two arguments:
(1) the name of a shell variable and (2) a string to prepend to the list that is
the value of the shell variable only if that string is not already an element
of the list. For example, the call

addenv PATH /opt/bin

would add /opt/bin to PATH only if that pathname is not already in
PATH. Be sure that your solution works, even if the shell variable starts
out empty. Also make sure that you check the list elements carefully. If
/usr/opt/bin is in PATH but /opt/bin is not, the example just given should
still add /opt/bin to PATH. (Hint: You may find this easier to do if you
first write a function locate_field that tells you whether a string is an
element in the value of a variable.)

