
1

Answers to Even-
Numbered Exercises 13
from page 676

1. Rewrite the journal script of Chapter 12 (example 1, page 620) by adding
commands to verify that the user has write permission for a file named
journal-file in the user’s home directory, if such a file exists. The script
should take appropriate actions if journal-file exists and the user does not
have write permission to the file. Verify that the modified script works.

2. The special parameter $@ is referenced twice in the out script (page 632).
Explain what would be different if the parameter $* were used in its
place.

If you replace $@ with $* in the out script, cat or less would be given a
single argument: a list of all the files you specified on the command line
enclosed within single quotation marks. This list will work fine when you
specify a single filename. When you specify more than one file, the shell
reports No such file or directory because there is not a file named the
string you specified on the command line (the SPACEs are not special
characters when they are enclosed within single quotation marks).

3. Write a filter that takes a list of files as input and outputs the basename
(page 657) of each file in the list.

4. Write a function that takes a single filename as an argument and adds
execute permission to the file for the user.

2 Chapter 13 Answers to Exercises

$ function perms {
> chmod u+x $1
> }

a. When might such a function be useful?

When you are writing many shell scripts, it can get tedious to give many
chmod commands. This function speeds up the process.

b. Revise the script so that it takes one or more filenames as arguments
and adds execute permission for the user for each file argument.

$ function perms {
> chmod u+x $*
> }

c. What can you do to make the function available every time you log in?

Put the function in your .bash_profile, .bash_login, or .profile file to make
it available each time you run a log in (using bash).

d. What if, in addition to having the function available on subsequent
login sessions, you want to make the function available now in your
current shell?

Use source to execute the file you put the function in, for example,

$ source .bash_profile

5. When might it be necessary or advisable to write a shell script instead of a
shell function? Give as many reasons as you can think of.

6. Write a shell script that will display the names of all directory files, but no
other types of files, in the working directory.

There are many ways to solve this problem. Following, the listdirs script
uses file to identify directory files and grep to pull them out of the list.
Finally, sed removes everything from file’s output including and following
the colon.

$ cat listdirs
file "$@" |
grep directory |
sed 's/:.*//'.

7. If your GNU/Linux system runs the X Window System, open a small
window on your screen, and write a script to display the time in that
window every 15 seconds. Read about the date utility (page 1141) and
display the time, using the %r field descriptor. Clear the window (using
the clear command) each time before you display the time.

Chapter 13 Answers to Exercises 3

8. Enter the following script named savefiles, and give yourself execute
permission to the file:

$ cat $HOME/bin/savefiles
#! /bin/bash
echo "Saving files in current directory in file savethem."
exec > savethem
for i in *
do
echo "==="
echo "File: $i"
echo "==="
cat "$i"
done

a. What error message do you get when you execute this script? Rewrite
the script so that the error does not occur, making sure the output still
goes to savethem.

You get the following error message:

cat: savethem: input file is output file

Add the following lines after the line with do on it:

if [$i == savethem]
 then
 continue
fi

b. What might be a problem with running this script twice in the same
directory? Discuss a solution to this problem.

Each time you run savefiles, it overwrites the savethem file with the
current contents of the working directory. When you remove a file and run
savefiles again, that file will no longer be in savethem. If you want to keep
an archive of files in the working directory, you need to save the files to a
new file each time you run savefiles. When you prefix the filename
savethem with $$, you will have a unique filename each time you run
savefiles.

9. Read the bash info page, try some examples, and then describe

a. How to export a function.

b. What the hash builtin does.

c. What happens if the argument to exec is not executable.

4 Chapter 13 Answers to Exercises

10. Using the find utility (page 1165), perform the following steps:

a. List all files in the working directory that have been modified within the
last day.

$ find . -mtime -1

b. List all files on the system that are bigger than 1 megabyte.

$ find / -size +1024k

c. Remove all files named core from the directory structure rooted at your
home directory.

$ find ~ -name core -exec rm {} \;

d. List the inode numbers of all files in the working directory whose
filenames end in .c.

$ find . -name "*.c" -ls

e. List all files on the root filesystem that have been modified in the last
month.

$ find / -xdev -mtime -30

11. Write a short script that tells you whether the permissions for two files,
whose names are given as arguments to the script, are identical. If the
permissions for the two files are identical, output the common permission
field. Otherwise, output each filename, followed by its permission field.
(Hint: Try using the cut utility [page 1132].)

12. Write a script that takes the name of a directory as an argument and
searches the file hierarchy rooted at that directory for zero-length files.
Write the names of all zero-length files to standard output. If there is no
option on the command line, have the script delete the file after displaying
its name, asking the user for confirmation, and receiving positive
confirmation. A –f option on the command line indicates that the script
should display the filename but not ask for confirmation before deleting
the file.

The following script segment deletes only ordinary files, not directories. As
always, you must specify a shell and check arguments.

$ cat zerdel
if [$1 == -f]
 then
 find $2 -empty -print -exec rm -f {} \;
 else
 find $1 -empty -ok rm -f {} \;
fi

Chapter 13 Answers to Exercises 5

13. Write a function that takes a colon-separated list of items and outputs the
items, one per line, to standard output (without the colons).

14. Generalize the function written in exercise 13 so that the character
separating the list items is given as an argument to the function. If this
argument is absent, the separator should default to a colon.

This script segment takes an optional option in the form –dx to specify the
delimiter x.

$ cat nodel
if [[$1 == -d?]]
 then
 del=$(echo $1 | cut -b3)
 shift
 else
 del=:
fi
IFS=$del
set $*
for i
 do
 echo $i
done

15. Write a function named funload that takes as its single argument the name
of a file containing other functions. The purpose of funload is to make all
functions in the named file available in the current shell; that is, funload
loads the functions from the named file. To locate the file, funload
searches the colon-separated list of directories given by the environment
variable FUNPATH. Assume that the format of FUNPATH is the same as
PATH and that searching FUNPATH is similar to the shell’s search of the
PATH variable.

16. If your GNU/Linux system runs X Windows, write a script that turns the
root window a different color when the amount of free disk space in any
filesystem reaches a certain threshold. (Hint: See df on page 1147 in Part
III.) Both the threshold and the color should be specified as arguments.
Check disk usage every 30 minutes. Start the script executing when your X
Windows session starts.

As it is more difficult to change the color of the root window when
running GNOME or KDE, for this example, place the following .xinitrc
file in your home directory and run startx to bring up the X Window

Advanced Exercises
Advanced Exercises

6 Chapter 13 Answers to Exercises

System. The dfcolor script is run to make the root window green if any
partition reaches the 80 percent full level.

$ cat .xinitrc
xterm&
bash dfcolor 80 green &
metacity

$ cat dfcolor
#!/bin/bash
threshold=$1
color=$2

while true
 do
 # put argument checking here
 val=$(/bin/df | # set val to list % free on each partition
 tail +2 | # cut off header
 sed 's/ */ /g' | # convert multiple spaces to single tabs
 cut --fields=5 | # display the percent free field
 sed 's/%//') # get rid of the percent sign

 # loop through percent full values and see if one is > threshold
 for val2 in $val
 do
 if [$val2 -ge $threshold]
 then xsetroot -solid $color
 fi
 done
 sleep 30m
 done

17. Enhance the spell_check script (page 646) to accept an optional third
argument. If given, this argument specifies a list of words to be added to
the output of spell_check. You can use a list of words like this to cull
usages you do not want in your documents. For example, if you decide
that you want to use disk rather than disc in your documents, you can
add disc to the list of words, and spell_check will complain if you use
disc in a document. Make sure that you include appropriate error checks
and usage messages.

18. Rewrite bundle so that the script it creates takes an optional list of
filenames as arguments. If one or more filenames are given on the
command line, only those files should be recreated; otherwise, all files in
the shell archive should be recreated. For example, suppose that all files
with the filename extension .c are bundled into an archive named srcshell,
and you want to unbundle just the files test1.c and test2.c. The following
command will unbundle just these two files:

$ bash srcshell test1.c test2.c

Chapter 13 Answers to Exercises 7

$ cat bundle2
#!/bin/bash
bundle: group files into distribution package

echo "# To unbundle, bash this file"
for i
do
 echo 'if echo $* | grep -q' $i '|| [$# = 0]'
 echo then
 echo "echo $i 1>&2"
 echo "cat >$i <<'End of $i'"
 cat $i
 echo "End of $i"
 echo fi
done

19. Using a single command line (pipes are all right), find all the unique shells
in the /etc/passwd file, and

a. Print out two columns listing each shell followed by the username for
every user who logs into that shell.

b. Sort the columns by shell and then by username. (Hint: use gawk.)

20. What kind of links will the lnks script (page 635) not find? Why?

The lnks script searches for links by the link count that ls –l displays and
by matching inode numbers. Both of these characteristics identify hard
links. Soft, or symbolic, links (page 126) cannot be identified in this
manner.

