
1

Answers to Even-
Numbered Exercises 12
from page 620

1. The following shell script adds entries to a file named journal-file in your
home directory. The script can help you keep track of phone conversations
and meetings:

$ cat journal
journal: add journal entries to the file
$HOME/journal-file

file=$HOME/journal-file
date >> $file
echo -n "Enter name of person or group: "
read name
echo "$name" >> $file
echo >> $file
cat >> $file
echo "--" >> $file
echo >> $file

a. What do you have to do to the script in order to be able to execute it?

b. Why does it use the read builtin the first time it accepts input from the
terminal and the cat utility the second time?

2. What are two ways you can execute a shell script when you do not have
execute access permission to the file containing the script? Can you
execute a shell script if you do not have read access permission?

2 Chapter 12 Answers to Exercises

You can give the name of the file containing the script as an argument to
the shell (for example, sh scriptfile or tcsh scriptfile, where scriptfile is the
name of the file containing the script).

Under bash you can give the following command:

$. scriptfile

Under tcsh you can use

$ source scriptfile

Because the shell must read the commands from the file containing a shell
script before it can execute the commands, you must have read permission
for the file in order to execute the shell script.

3. What is the purpose of the PATH variable?

a. Set up your PATH variable so that it causes the shell to search the
following directories in order:

• /usr/local/bin

• /usr/bin/X11

• /usr/bin

• /bin

• /usr/openwin/bin

• Your own bin directory (usually bin or .bin in your home directory)

• The working directory

b. If a file named whereis is in /usr/bin and also in your ~/bin, which one
does whereis indicate will be executed? (Assume that you have execute
permission for both of the files.)

c. If your PATH variable is not set to search the working directory, how
can you execute a program located there?

d. What command can you use to add the directory /usr/games to the end
of the list of directories in PATH?

4. Assume that you have made the following assignment:

$ person=jenny

Give the output of each of the following commands:

a. echo $person

jenny

Chapter 12 Answers to Exercises 3

b. echo '$person'

$person

c. echo "$person"

jenny

5. Explain the unexpected following result:

$ whereis date
date: /bin/date
$ echo $PATH
.:/usr/local/bin:/usr/bin:/bin
$ cat > date
echo "This is my own version of date."
$ date
Wed Mar 12 09:11:54 MST 2003

6. Assume that the /home/jenny/grants/biblios and /home/jenny/biblios
directories exist. For both (a) and (b), give Jenny’s working directory after
she executes the sequence of commands given. Explain.

a.

$ pwd
/home/jenny/grants
$ CDPATH=$(pwd)
$ cd
$ cd biblios

After executing the preceding commands, Jenny’s working directory is
/home/jenny/grants/biblios.

When CDPATH is set, cd searches only the directories specified by
CDPATH, cd does not search the working directory unless the working
directory is specified in CDPATH (by using a period).

b.

$ pwd
/home/jenny/grants
CDPATH=$(pwd)
$ cd $HOME/biblios

After executing the preceding commands, Jenny’s working directory is
/home/jenny/biblios because, when you give cd an absolute pathname as
an argument, cd does not use CDPATH.

7. Name two ways you can identify the PID of your login shell.

8. Try giving the following command:

$ sleep 30 | cat /etc/inittab

4 Chapter 12 Answers to Exercises

Is there any output from sleep? Where does cat get its input from? What
has to happen before you get a prompt back?

There is no output from sleep (try giving the command sleep 30 by itself).
The /etc/inittab file provides input for cat (when cat has an argument, it
does not check its standard input). The sleep command has to run to
completion before you get another prompt.

9. Write a sequence of commands or a script that demonstrates that
parameter expansion occurs before variable expansion and that variable
expansion occurs before pathname expansion.

10. Write a shell script that outputs the name of the shell that is executing it.

There are many ways to solve this problem. The following solutions are all
basically the same. These scripts take advantage of the PPID shell variable
which holds the PID of the shell that is the parent of the process using the
variable and of the fact that echo changes multiple sequential SPACEs to a
single SPACE. The cut utility interprets multiple sequential SPACEs as multiple
delimiters so, without echo, the script does not work properly.

$ cat a
pid=$PPID
line=$(ps | grep $pid)
echo $line | cut --delimiter=" " --fields=4

$ cat a2
pid=$PPID
echo $(ps | grep $pid) | cut --delimiter=" " --fields=4

$ cat a3
echo $(ps | grep $PPID) | cut --delimiter=" " --fields=4

The easy solution is to put the following line in the shell script:

echo $0

The $0 is the first command line token, which is usually the name of the
script that is running. In some cases, such as when you call the script with
a relative or absolute pathname, this may not be exactly what you want.

Advanced Exercises
Advanced Exercises

Chapter 12 Answers to Exercises 5

11. Type in the following shell scripts and run them:

$ cat report_dir
old_dir=$(pwd)
echo "Current working directory: " $old_dir
go_home
echo "Current working directory: " $(pwd)

$ cat go_home
cd
echo "New working directory: " $(pwd)
echo "Last working directory: " $old_dir

What is wrong? Change the scripts so that each of the echo commands
displays the proper value.

12. The following is a modified version of the read2 script from page 574.
Explain why it behaves differently. For what type of input does it produce
the same output of the original read2 script?

$ cat read2
echo -n "Enter a command: "
read command
"$command"
echo "Thanks"

In the preceding read2 script, the string $command is surrounded by double
quotation marks, causing it to pass a single argument to the shell. The
script in the text does not surround the string with quotation marks and
therefore passes the shell as many arguments as the user enters. The result
is that, given single word commands (commands without arguments),
both versions of the script produce the same results.

When you respond to the prompt issued by the preceding command with
echo hi there, the script generates an error because the script passes the
string echo hi there as the command to execute; the SPACEs are not special
characters that separate words because they are quoted. You get the same
error message when you give the following command:

$ echo\ hi\ there

13. Explain the behavior of the following shell script:

$ cat quote_demo
twoliner="This is line 1.
This is line 2."
echo "$twoliner"
echo $twoliner

a. How many arguments does each echo command see in this script?
Explain.

b. Redefine the IFS shell variable so that the output of the second echo is
the same as the first.

