
1

Answers to Even-
Numbered Exercises 5
from page 163

1. What does the shell ordinarily do while a command is executing? What
should you do if you do not want to wait for a command to finish before
running another command?

2. Using sort as a filter, rewrite the following sequence of commands:

$ sort list > temp
$ lpr temp
$ rm temp

$ cat list | sort | lpr

3. What is a PID number? Why are they useful when you run processes in the
background?

4. Assume that the following files are in the working directory:

$ ls
intro notesb ref2 section1 section3 section4b
notesa ref1 ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express
filenames with as few characters as possible.

2 Chapter 5 Answers to Exercises

a. List all files that begin with section.

$ ls section*

b. List the section1, section2, and section3 files only.

$ ls section[1-3]

c. List the intro file only.

$ ls i*

d. List the section1, section3, ref1, and ref3 files.

$ ls *[13]

5. Refer to the documentation of utilities in Part III or the man pages to
determine what commands will

a. Output the number of lines in the standard input that contain the word
a or A .

b. Output only the names of the files in the working directory that contain
the pattern $(.

c. List the files in the working directory in their reverse alphabetical order.

d. Send a list of files in the working directory to the printer, sorted by size.

6. Give a command to

a. Redirect the standard output from a sort command into a file named
phone_list. Assume that the input file is named numbers.

$ sort numbers > phone_list

b. Translate all occurrences of characters [and { to the character (, and all
occurrences of the characters] and } to the character) in the file
permdemos.c. (Hint: Refer to tr on page 1362 in Part III.)

$ cat permdemos.c | tr '[{}]' '(())' or
$ tr '[{}]' '(())' < permdemos.c

c. Create a file named book that contains the contents of two other files:
part1 and part2.

$ cat part[12] > book

7. The lpr and sort utilities accept input either from a file named on the
command line or from standard input.

a. Name two other utilities that function in a similar manner.

b. Name a utility that accepts its input only from standard input.

Chapter 5 Answers to Exercises 3

8. Give an example of a command that uses grep

a. With both input and output redirected.

$ grep \$Id < *.c > id_list

b. With only input redirected.

$ grep -i suzi < addresses

c. With only output redirected.

$ grep -il memo *.txt > memoranda_files

d. Within a pipe.

$ file /usr/bin/* | grep "Again shell script" | sort -r

In which of the preceding is grep used as a filter?

Example d uses grep as a filter.

9. Explain the following error message. What filenames would a subsequent
ls display?

$ ls
abc abd abe abf abg abh
$ rm abc ab*
rm: cannot remove 'abc': No such file or directory

10. When you use the redirect output symbol (>) with a command, the shell
creates the output file immediately, before the command is executed.
Demonstrate that this is true.

$ ls aaa
ls: aaa: No such file or directory
$ ls xxxxx > aaa
ls: xxxxx: No such file or directory
$ ls aaa
aaa

The first of the preceding commands shows that the file aaa does not exist
in the working directory. The next command uses ls to attempt to list a
nonexistent file (xxxxx) and sends the standard output to aaa. The ls
command fails and sends an error message to standard error (you see it on
the screen). Even though the ls command failed, the empty file named aaa
exists. Because the ls command failed, it did not create the file; the shell
created it before calling ls.

Advanced Exercises
Advanced Exercises

4 Chapter 5 Answers to Exercises

11. In experimenting with shell variables, Alex accidentally deletes his PATH
variable. He decides that he does not need the PATH variable. Discuss
some of the problems he may soon encounter, and explain the reasons for
these problems. How could he easily return PATH to its original value?

12. Assume that your permissions allow you to write to a file but not to delete
it.

a. Give a command to empty the file without invoking an editor.

$ filename < /dev/null or
$ cat /dev/null > filename

b. Explain how you might have permission to modify a file that you
cannot delete.

To delete a file, you must have write and execute permission to the
directory housing the file. To write to a file, you must have write
permission to the file and execute permission to the parent directory.
When you have write permission only to a file and execute permission
only to the directory the file is in, you can modify, but not delete, the file.

13. If you accidentally create a filename with a nonprinting character, such as
a CONTROL character in it, how can you rename the file?

14. Why can the noclobber variable not protect you from overwriting an
existing file with cp or mv?

The noclobber variable keeps the shell from overwriting a file and does
not work on utilities. Thus the noclobber variable keeps a redirect symbol
(>) from allowing the shell to overwrite a file (the shell redirects output)
but has no affect when you ask cp or mv to overwrite a file.

15. Why do command names and filenames usually not have embedded SPACEs?
How would you create a filename containing a SPACE? How would you
remove it? (This is a thought exercise, not a recommended practice. If you
want to experiment, create and work in a directory with nothing but your
experimental file in it.)

16. Create a file named answers and give the following command:

$ > answers.0102 < answers cat

Explain what the command does and why. What is a more conventional
way of expressing this command?

Chapter 5 Answers to Exercises 5

Reading the command line from left to right, it instructs the shell to
redirect standard output to answers.0102, redirect standard input to come
from answers, and execute the cat utility. More conventionally, the same
command is expressed as

$ cat answers > answers.0102

