é 10.bash3.fm Page 457 Tuesday, April 2, 2013 5:56 PM

FILE DESCRIPTORS 457

optional

In a similar manner, if you send standard output of is.term through a pipeline, test
reports standard output is not associated with a terminal. In this example, cat copies
standard input to standard output:

$./is.term | cat
FD 1 (stdout) 1is NOT going to the screen

You can also experiment with test on the command line. This technique allows you
to make changes to your experimental code quickly by taking advantage of command
history and editing (page 328). To better understand the following examples, first
verify that test (called as []) returns a value of 0 (¢rue) when file descriptor 1 is asso-
ciated with the screen and a value other than 0 (false) when file descriptor 1 is not
associated with the screen. The $? special parameter (page 465) holds the exit status
of the previous command.

$[-t1]

$ echo $?

0

$[-t11]1> hold
$ echo $?

1

As explained on page 292, the & & (AND) control operator first executes the com-
mand preceding it. Only if that command returns a value of 0 (¢rue) does & & execute
the command following it. In the following example, if [-t 1] returns 0, & & executes
echo "FD 1 to screen". Although the parentheses (page 292) are not required in this
example, they are needed in the next one.

$ ([-t1] & echo "FD 1 to screen")
FD 1 to screen

Next, the output from the same command line is sent through a pipeline to cat, so
test returns 1 (false) and & & does not execute echo.

$ ([-t1] & echo "FD 1 to screen") | cat
$

The following example is the same as the previous one, except test checks whether file
descriptor 2 is associated with the screen. Because the pipeline redirects only standard
output, test returns 0 (¢rue) and & & executes echo.

$ ([-t2] & echo "FD 2 to screen") | cat
FD 2 to screen

In this example, test checks whether file descriptor 2 is associated with the screen(it is)
and echo sends its output to file descriptor 1 (which goes through the pipeline to cat).

ﬁ%

é 10.bash3.fm Page 458 Tuesday, April 2, 2013 5:56 PM

458 CHAPTER 10 PROGRAMMING THE BOURNE AGAIN SHELL (bash)

—®| @

PARAMETERS

Shell parameters were introduced on page 300. This section goes into more detail
about positional parameters and special parameters.

POSITIONAL PARAMETERS

Positional parameters comprise the command name and command-line arguments.
These parameters are called positional because you refer to them by their position on
the command line. You cannot use an assignment statement to change the value of a
positional parameter. However, the bash set builtin (page 460) enables you to change
the value of any positional parameter except the name of the calling program (the
command name). The tcsh set builtin does not change the values of positional
parameters.

$0: NAME OF THE CALLING PROGRAM

The shell expands $0 to the name of the calling program (the command you used to
call the program—usually the name of the program you are running). This parameter
is numbered zero because it appears before the first argument on the command line:

$ cat abc

echo "This script was called by typing $0"

$./abc

This script was called by typing ./abc

$ /home/sam/abc

This script was called by typing /home/sam/abc

The preceding shell script uses echo to verify the way the script you are executing was
called. You can use the basename utility and command substitution to extract the
simple filename of the script:

$ cat abc2

echo "This script was called by typing $(basename $0)"
$ /home/sam/abc2

This script was called by typing abc2

When you call a script through a link, the shell expands $0 to the value of the link.
The busybox utility (page 729) takes advantage of this feature so it knows how it was
called and which utility to run.

$ Tn -s abc2 mylink
$ /home/sam/my1ink
This script was called by typing mylink

When you display the value of $0 from an interactive shell, the shell displays its name
because that is the name of the calling program (the program you are running).

$ echo $0
bash

4~ -~

