
Praise for the First Edition of A Practical Guide to

Linux Commands, Editors, and Shell Programming

“This book is a very useful tool for anyone who wants to ‘look under
the hood’ so to speak, and really start putting the power of Linux to
work. What I find particularly frustrating about man pages is that they
never include examples. Sobell, on the other hand, outlines very clearly
what the command does and then gives several common, easy-to-
understand examples that make it a breeze to start shell programming
on one’s own. As with Sobell’s other works, this is simple, straight-for-
ward, and easy to read. It’s a great book and will stay on the shelf at
easy arm’s reach for a long time.”

—Ray Bartlett
Travel Writer

“Overall I found this book to be quite excellent, and it has earned a spot
on the very front of my bookshelf. It covers the real ‘guts’ of Linux—
the command line and its utilities—and does so very well. Its strongest
points are the outstanding use of examples, and the Command Refer-
ence section. Highly recommended for Linux users of all skill levels.
Well done to Mark Sobell and Prentice Hall for this outstanding book!”

—Dan Clough
Electronics Engineer and
Slackware Linux user

“Totally unlike most Linux books, this book avoids discussing every-
thing via GUI and jumps right into making the power of the command
line your friend.”

—Bjorn Tipling
Software Engineer
ask.com

“This book is the best distro-agnostic, foundational Linux reference I’ve
ever seen, out of dozens of Linux-related books I’ve read. Finding this
book was a real stroke of luck. If you want to really understand how to
get things done at the command line, where the power and flexibility of

®

free UNIX-like OSes really live, this book is among the best tools you’ll
find toward that end.”

—Chad Perrin
Writer, TechRepublic

Praise for Other Books by Mark G. Sobell

“I keep searching for books that collect everything you want to know
about a subject in one place, and keep getting disappointed. Usually the
books leave out some important topic, while others go too deep in
some areas and must skim lightly over the others. A Practical Guide to
Red Hat® Linux® is one of those rare books that actually pulls it off.
Mark G. Sobell has created a single reference for Red Hat Linux that
can’t be beat! This marvelous text (with a 4-CD set of Linux Fedora
Core 2 included) is well worth the price. This is as close to an ‘every-
thing you ever needed to know’ book that I’ve seen. It’s just that good
and rates 5 out of 5.”

—Ray Lodato
Slashdot contributor

“Mark Sobell has written a book as approachable as it is authoritative.”

—Jeffrey Bianchine
Advocate, Author, Journalist

“Excellent reference book, well suited for the sysadmin of a Linux clus-
ter, or the owner of a PC contemplating installing a recent stable Linux.
Don’t be put off by the daunting heft of the book. Sobell has strived to
be as inclusive as possible, in trying to anticipate your system adminis-
tration needs.”

—Wes Boudville
Inventor

“A Practical Guide to Red Hat® Linux® is a brilliant book. Thank you
Mark Sobell.”

—C. Pozrikidis
University of California
at San Diego

“This book presents the best overview of the Linux operating system
that I have found. . . . [It] should be very helpful and understandable
no matter what the reader’s background: traditional UNIX user, new
Linux devotee, or even Windows user. Each topic is presented in a
clear, complete fashion, and very few assumptions are made about
what the reader knows. . . . The book is extremely useful as a reference,
as it contains a 70-page glossary of terms and is very well indexed. It is
organized in such a way that the reader can focus on simple tasks with-
out having to wade through more advanced topics until they are
ready.”

—Cam Marshall
Marshall Information Service LLC
Member of Front Range UNIX
Users Group [FRUUG]
Boulder, Colorado

“Conclusively, this is THE book to get if you are a new Linux user and
you just got into the RH/Fedora world. There’s no other book that dis-
cusses so many different topics and in such depth.”

—Eugenia Loli-Queru
Editor in Chief
OSNews.com

mark
Typewritten Text
Blank

A Practical Guide to Linux Commands,

Editors, and Shell Programming

SECOND EDITION

Mark G. Sobell

ISBN: 978-0-13-136736-4

Copyright © 2010 Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

®

Excerpts of Chapters From

mark
Typewritten Text
Blank

117117

E
X
C
E
R
P
T

5Chapter5This chapter takes a close look at the shell and explains how
to use some of its features. It discusses command-line syntax
and describes how the shell processes a command line and
initiates execution of a program. In addition the chapter
explains how to redirect input to and output from a com-
mand, construct pipes and filters on the command line, and
run a command in the background. The final section covers
filename expansion and explains how you can use this feature
in your everyday work.

Except as noted, everything in this chapter applies to the
Bourne Again (bash) and TC (tcsh) Shells. The exact wording
of the shell output differs from shell to shell: What the shell
you are using displays may differ slightly from what appears in
this book. For shell-specific information, refer to Chapters 8
(bash) and 9 (tcsh). Chapter 10 covers writing and executing
bash shell scripts.

In This Chapter

The Command Line 118

Standard Input and Standard
Output . 131

Pipes . 131

Running a Command in the
Background 142

kill: Aborting a Background Job . . 136

Filename Generation/Pathname
Expansion 136

Builtins . 141

5

The Shell

126 Chapter 5 The Shell

Redirection

The term redirection encompasses the various ways you can cause the shell to alter
where standard input of a command comes from and where standard output goes
to. By default the shell associates standard input and standard output of a com-
mand with the keyboard and the screen. You can cause the shell to redirect standard
input or standard output of any command by associating the input or output with a
command or file other than the device file representing the keyboard and the screen.
This section demonstrates how to redirect input from and output to ordinary files.

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a com-
mand to the specified file instead of to the screen (Figure 5-6). The format of a
command line that redirects output is

command [arguments] > filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the output to.

Figure 5-7 uses cat to demonstrate output redirection. This figure contrasts with
Figure 5-5, where standard input and standard output are associated with the key-
board and screen. The input in Figure 5-7 comes from the keyboard. The redirect
output symbol on the command line causes the shell to associate cat’s standard out-
put with the sample.txt file specified on the command line.

After giving the command and typing the text shown in Figure 5-7, the sample.txt
file contains the text you entered. You can use cat with an argument of sample.txt to
display this file. The next section shows another way to use cat to display the file.

Figure 5-7 shows that redirecting standard output from cat is a handy way to
create a file without using an editor. The drawback is that once you enter a line

Standard Input and Standard Output 127

and press RETURN, you cannot edit the text. While you are entering a line, the erase
and kill keys work to delete text. This procedure is useful for creating short,
simple files.

Figure 5-8 shows how to use cat and the redirect output symbol to catenate (join
one after the other—the derivation of the name of the cat utility) several files into
one larger file. The first three commands display the contents of three files:
stationery, tape, and pens. The next command shows cat with three filenames as
arguments. When you call it with more than one filename, cat copies the files, one at
a time, to standard output. This command redirects standard output to the file
supply_orders. The final cat command shows that supply_orders holds the contents
of all three original files.

$ cat > sample.txt
This text is being entered at the keyboard and
cat is copying it to a file.
Press CONTROL-D to signal the end of file.
CONTROL-D
$

Figure 5-7 cat with its output redirected

Redirecting output can destroy a file I
caution Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and

destroy its contents. For more information see the tip “Redirecting output can destroy a file II” on
page 129.

$ cat stationery
2,000 sheets letterhead ordered: 10/7/08

$ cat tape
1 box masking tape ordered: 10/14/08
5 boxes filament tape ordered: 10/28/08

$ cat pens
12 doz. black pens ordered: 10/4/08

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: 10/7/08
1 box masking tape ordered: 10/14/08
5 boxes filament tape ordered: 10/28/08
12 doz. black pens ordered: 10/4/08
$

Figure 5-8 Using cat to catenate files

128 Chapter 5 The Shell

Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 5-9). The format of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the input from.

Figure 5-10 shows cat with its input redirected from the supply_orders file created
in Figure 5-8 and standard output going to the screen. This setup causes cat to dis-
play the sample file on the screen. The system automatically supplies an EOF signal
at the end of an ordinary file.

Utilities that take
input from a file or

standard input

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of
a class of Linux utilities that function in this manner. Other members of this class of
utilities include lpr, sort, grep, and Perl. These utilities first examine the command
line you call them with. If you include a filename on the command line, the utility
takes its input from the file you specify. If you do not specify a filename, the utility
takes its input from standard input. It is the utility or program—not the shell or
operating system—that functions in this manner.

Figure 5-9 Redirecting standard input

Command

Standard
outputS

h
el

l

Standard
input

File

S
hell

$ cat < supply_orders
2,000 sheets letterhead ordered: 10/7/08
1 box masking tape ordered: 10/14/08
5 boxes filament tape ordered: 10/28/08
12 doz. black pens ordered: 10/4/08

Figure 5-10 cat with its input redirected

Standard Input and Standard Output 129

noclobber: Avoids Overwriting Files

The shell provides the noclobber feature that prevents overwriting a file using redi-
rection. Under bash you can enable this feature by setting noclobber using the com-
mand set –o noclobber. The same command with +o unsets noclobber. Under tcsh
use set noclobber and unset noclobber. With noclobber set, if you redirect output to
an existing file, the shell displays an error message and does not execute the com-
mand. The following example, run under bash and tcsh, creates a file using touch,
sets noclobber, attempts to redirect the output from echo to the newly created file,
unsets noclobber, and performs the redirection again:

bash $ touch tmp
$ set -o noclobber
$ echo "hi there" > tmp
bash: tmp: cannot overwrite existing file
$ set +o noclobber
$ echo "hi there" > tmp
$

tcsh tcsh $ touch tmp
tcsh $ set noclobber
tcsh $ echo "hi there" > tmp
tmp: File exists.
tcsh $ unset noclobber
tcsh $ echo "hi there" > tmp
$

Redirecting output can destroy a file II

caution Depending on which shell you are using and how the environment is set up, a command such as
the following may yield undesired results:

$ cat orange pear > orange
cat: orange: input file is output file

Although cat displays an error message, the shell destroys the contents of the existing orange
file. The new orange file will have the same contents as pear because the first action the shell
takes when it sees the redirection symbol (>) is to remove the contents of the original orange file.
If you want to catenate two files into one, use cat to put the two files into a temporary file and then
use mv to rename the temporary file:

$ cat orange pear > temp
$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 52)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output
grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message may take
a moment to appear, giving you a sense the command is running correctly. Even after you see the
error message, it may take a while to realize you have destroyed the contents of a.

130 Chapter 5 The Shell

You can override noclobber by putting a pipe symbol (tcsh uses an exclamation
point) after the redirect symbol (>|). In the following example, the user creates a file
by redirecting the output of date. Next the user sets the noclobber variable and redi-
rects output to the same file again. The shell displays an error message. Then the
user places a pipe symbol after the redirect symbol and the shell allows the user to
overwrite the file.

$ date > tmp2
$ set -o noclobber
$ date > tmp2
bash: a: cannot overwrite existing file
$ date >| tmp2
$

For more information on using noclobber under tcsh, refer to page 377.

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving existing information intact. This symbol provides a convenient way
of catenating two files into one. The following commands demonstrate the action of
the append output symbol. The second command accomplishes the catenation
described in the preceding caution box:

$ cat orange
this is orange
$ cat pear >> orange
$ cat orange
this is orange
this is pear

The first command displays the contents of the orange file. The second command
appends the contents of the pear file to the orange file. The final cat displays the result.

The next example shows how to create a file that contains the date and time (the
output from date), followed by a list of who is logged in (the output from who). The
first line in Figure 5-11 redirects the output from date to the file named whoson.
Then cat displays the file. Next the example appends the output from who to the
whoson file. Finally cat displays the file containing the output of both utilities.

Do not trust noclobber
caution Appending output is simpler than the two-step procedure described in the preceding caution box

but you must be careful to include both greater than signs. If you accidentally use only one and
the noclobber feature is not set, the shell will overwrite the orange file. Even if you have the
noclobber feature turned on, it is a good idea to keep backup copies of the files you are manipu-
lating in case you make a mistake.

Although it protects you from overwriting a file using redirection, noclobber does not stop you
from overwriting a file using cp or mv. These utilities include the –i (interactive) option that helps
protect you from this type of mistake by verifying your intentions when you try to overwrite a file.
For more information see the tip “cp can destroy a file” on page 50.

Standard Input and Standard Output 131

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output that you do not want to keep or see to /dev/null and the output will
disappear without a trace:

$ echo "hi there" > /dev/null
$

When you read from /dev/null, you get a null string. Give the following cat com-
mand to truncate a file named messages to zero length while preserving the owner-
ship and permissions of the file:

$ ls -l messages
-rw-r--r-- 1 max pubs 25315 Oct 24 10:55 messages
$ cat /dev/null > messages
$ ls -l messages
-rw-r--r-- 1 max pubs 0 Oct 24 11:02 messages

$ date > whoson
$ cat whoson
Fri Mar 27 14:31:18 PST 2009
$ who >> whoson
$ cat whoson
Fri Mar 27 14:31:18 PST 2009
sam console Mar 27 05:00(:0)
max pts/4 Mar 27 12:23(:0.0)
max pts/5 Mar 27 12:33(:0.0)
zach pts/7 Mar 26 08:45 (bravo.example.com)

Figure 5-11 Redirecting and appending output

mark
Typewritten Text
Blank

149149

E
X
C
E
R
P
T

6Chapter6This chapter begins with a history and description of vi, the
original, powerful, sometimes cryptic, interactive, visually
oriented text editor. The chapter continues with a tutorial
that explains how to use vim (vi improved—a vi clone supplied
with or available for most Linux distributions) to create and
edit a file. Much of the tutorial and the balance of the chapter
apply to vi and other vi clones. Following the tutorial, the
chapter delves into the details of many vim commands and
explains how to use parameters to customize vim to meet your
needs. It concludes with a quick reference/summary of vim
commands.

In This Chapter

Tutorial: Using vim to Create
and Edit a File 161

Introduction to vim Features 158

Online Help 158

Command Mode: Moving
the Cursor. 174

Input Mode 168

Command Mode: Deleting and
Changing Text 179

Searching and Substituting 173

Copying, Moving, and
Deleting Text 190

The General-Purpose Buffer 181

Reading and Writing Files 183

The .vimrc Startup File 185

6

The vim Editor

Searching and Substituting 173

Searching and Substituting

Searching for and replacing a character, a string of text, or a string that is matched
by a regular expression is a key feature of any editor. The vim editor provides simple
commands for searching for a character on the current line. It also provides more
complex commands for searching for—and optionally substituting for—single and
multiple occurrences of strings or regular expressions anywhere in the Work buffer.

Searching for a Character

Find (f/F) You can search for and move the cursor to the next occurrence of a specified char-
acter on the current line using the f (Find) command. Refer to “Moving the Cursor
to a Specific Character” on page 165.

Find (t/T) The next two commands are used in the same manner as the Find commands. The
t command places the cursor on the character before the next occurrence of the
specified character. The T command places the cursor on the character after the
previous occurrence of the specified character.

A semicolon (;) repeats the last f, F, t, or T command.

You can combine these search commands with other commands. For example, the
command d2fq deletes the text from the current character to the second occurrence
of the letter q on the current line.

Command Result

s Substitutes one or more characters for current character

S Substitutes one or more characters for current line

5s Substitutes one or more characters for five characters, starting with current
character

174 Chapter 6 The vim Editor

Searching for a String

Search (/ /?) The vim editor can search backward or forward through the Work buffer to find a
string of text or a string that matches a regular expression (Appendix A). To find
the next occurrence of a string (forward), press the forward slash (/) key, enter the
text you want to find (called the search string), and press RETURN. When you press
the slash key, vim displays a slash on the status line. As you enter the string of text,
it is also displayed on the status line. When you press RETURN, vim searches for the
string. If this search is successful, vim positions the cursor on the first character of
the string. If you use a question mark (?) in place of the forward slash, vim searches
for the previous occurrence of the string. If you need to include a forward slash in
a forward search or a question mark in a backward search, you must quote it by
preceding it with a backslash (\).

Next (n/N) The N and n keys repeat the last search but do not require you to reenter the search
string. The n key repeats the original search exactly, and the N key repeats the
search in the opposite direction of the original search.

If you are searching forward and vim does not find the search string before it gets to
the end of the Work buffer, the editor typically wraps around and continues the
search at the beginning of the Work buffer. During a backward search, vim wraps
around from the beginning of the Work buffer to the end. Also, vim normally per-
forms case-sensitive searches. Refer to “Wrap scan” (page 189) and “Ignore case in
searches” (page 187) for information about how to change these search parameters.

Normal Versus Incremental Searches

When vim performs a normal search (its default behavior), you enter a slash or ques-
tion mark followed by the search string and press RETURN. The vim editor then moves
the cursor to the next or previous occurrence of the string you are searching for.

When vim performs an incremental search, you enter a slash or question mark. As
you enter each character of the search string, vim moves the highlight to the next or
previous occurrence of the string you have entered so far. When the highlight is on
the string you are searching for, you must press RETURN to move the cursor to the
highlighted string. If the string you enter does not match any text, vim does not
highlight anything.

The type of search that vim performs depends on the incsearch parameter
(page 187). Give the command :set incsearch to turn on incremental searching; use
noincsearch to turn it off. When you set the compatible parameter (page 158), vim
turns off incremental searching.

Two distinct ways of quoting characters

tip You use CONTROL-V to quote special characters in text that you are entering into a file (page 169).
This section discusses the use of a backslash (\) to quote special characters in a search string.
The two techniques of quoting characters are not interchangeable.

Searching and Substituting 175

Special Characters in Search Strings

Because the search string is a regular expression, some characters take on a special
meaning within the search string. The following paragraphs list some of these char-
acters. See also “Extended Regular Expressions” on page 893.

The first two items in the following list (^ and $) always have their special meanings
within a search string unless you quote them by preceding them with a backslash
(\). You can turn off the special meanings within a search string for the rest of the
items in the list by setting the nomagic parameter. For more information refer to
“Allow special characters in searches” on page 186.

^ Beginning-of-Line Indicator

When the first character in a search string is a caret (also called a circumflex), it
matches the beginning of a line. For example, the command /^the finds the next line
that begins with the string the.

$ End-of-Line Indicator

A dollar sign matches the end of a line. For example, the command /!$ finds the
next line that ends with an exclamation point and / $ matches the next line that
ends with a SPACE.

. Any-Character Indicator

A period matches any character, anywhere in the search string. For example, the
command /l..e finds line, followed, like, included, all memory, or any other word or
character string that contains an l followed by any two characters and an e. To
search for a period, use a backslash to quote the period (\.).

\> End-of-Word Indicator

This pair of characters matches the end of a word. For example, the command /s\>
finds the next word that ends with an s. Whereas a backslash (\) is typically used to
turn off the special meaning of a character, the character sequence \> has a special
meaning, while > alone does not.

\< Beginning-of-Word Indicator

This pair of characters matches the beginning of a word. For example, the com-
mand /\<The finds the next word that begins with the string The. The beginning-
of-word indicator uses the backslash in the same, atypical way as the end-of-word
indicator.

* Zero or More Occurrences

This character is a modifier that will match zero or more occurrences of the character
immediately preceding it. For example, the command /dis*m will match the string di
followed by zero or more s characters followed by an m. Examples of successful
matches would include dim, or dism, and dissm.

176 Chapter 6 The vim Editor

[] Character-Class Definition

Brackets surrounding two or more characters match any single character located
between the brackets. For example, the command /dis[ck] finds the next occurrence
of either disk or disc.

There are two special characters you can use within a character-class definition. A
caret (^) as the first character following the left bracket defines the character class
to be any except the following characters. A hyphen between two characters indi-
cates a range of characters. Refer to the examples in Table 6-4.

Substituting One String for Another

A Substitute command combines the effects of a Search command and a Change
command. That is, it searches for a string (regular expression) just as the / command

Table 6-4 Search examples

Search string What it finds

/and Finds the next occurrence of the string and

Examples: sand and standard slander andiron

/ \<and\> Finds the next occurrence of the word and

Example: and

/^The Finds the next line that starts with The

Examples:

The . . .

There . . .

/^[0-9][0-9]) Finds the next line that starts with a two-digit number followed by a right
parenthesis

Examples:

77)...

01)...

15)...

/ \<[adr] Finds the next word that starts with a, d, or r

Examples: apple drive road argument right

/^[A-Za-z] Finds the next line that starts with an uppercase or lowercase letter

Examples:

will not find a line starting with the number 7 . . .

Dear Mr. Jones . . .

in the middle of a sentence like this . . .

Searching and Substituting 177

does, allowing the same special characters discussed in the previous section. When
it finds the string or matches the regular expression, the Substitute command
changes the string or regular expression it matches. The syntax of the Substitute
command is

:[g][address]s/search-string/replacement-string[/option]

As with all commands that begin with a colon, vim executes a Substitute command
from the status line.

The Substitute Address

If you do not specify an address, Substitute searches only the current line. If you use
a single line number as the address, Substitute searches that line. If the address is
two line numbers separated by a comma, Substitute searches those lines and the
lines between them. Refer to “Line numbers” on page 187 if you want vim to dis-
play line numbers. Wherever a line number is allowed in the address, you may also
use an address string enclosed between slashes. The vim editor operates on the next
line that the address string matches. When you precede the first slash of the address
string with the letter g (for global), vim operates on all lines in the file that the
address string matches. (This g is not the same as the one that goes at the end of the
Substitute command to cause multiple replacements on a single line; see “Searching
for and Replacing Strings” on the next page).

Within the address, a period represents the current line, a dollar sign represents the
last line in the Work buffer, and a percent sign represents the entire Work buffer.
You can perform address arithmetic using plus and minus signs. Table 6-5 shows
some examples of addresses.

Table 6-5 Addresses

Address Portion of Work buffer addressed

5 Line 5

77,100 Lines 77 through 100 inclusive

1,. Beginning of Work buffer through current line

.,$ Current line through end of Work buffer

1,$ Entire Work buffer

% Entire Work buffer

/pine/ The next line containing the word pine

g/pine/ All lines containing the word pine

.,.+10 Current line through tenth following line (11 lines in all)

178 Chapter 6 The vim Editor

Searching for and Replacing Strings

An s comes after the address in the command syntax, indicating that this is a Substi-
tute command. A delimiter follows the s, marking the beginning of the search-string.
Although the examples in this book use a forward slash, you can use as a delimiter
any character that is not a letter, number, blank, or backslash. You must use the same
delimiter at the end of the search-string.

Next comes the search-string. It has the same format as the search string in the /
command and can include the same special characters (page 175). (The search-string
is a regular expression; refer to Appendix A for more information.) Another delim-
iter marks the end of the search-string and the beginning of the replacement-string.

The replacement-string replaces the text matched by the search-string and is typically
followed by the delimiter character. You can omit the final delimiter when no option
follows the replacement-string; a final delimiter is required if an option is present.

Several characters have special meanings in the search-string, and other characters
have special meanings in the replacement-string. For example, an ampersand (&) in
the replacement-string represents the text that was matched by the search-string. A
backslash in the replacement-string quotes the character that follows it. Refer to
Table 6-6 and Appendix A.

Table 6-6 Search and replace examples

Command Result

:s/bigger/biggest/ Replaces the first occurrence of the string bigger on the current line
with biggest

Example:

bigger → biggest

:1,.s/Ch 1/Ch 2/g Replaces every occurrence of the string Ch 1, before or on the cur-
rent line, with the string Ch 2

Examples:

Ch 1 → Ch 2

Ch 12 → Ch 22

:1,$s/ten/10/g Replaces every occurrence of the string ten with the string 10

Examples:

ten → 10

often → of10

tenant → 10ant

:g/chapter/s/ten/10/ Replaces the first occurrence of the string ten with the string 10 on
all lines containing the word chapter

Examples:

chapter ten → chapter 10

chapters will often → chapters will of10

Searching and Substituting 179

Normally, the Substitute command replaces only the first occurrence of any text
that matches the search-string on a line. If you want a global substitution—that is,
if you want to replace all matching occurrences of text on a line—append the g
(global) option after the delimiter that ends the replacement-string. Another useful
option, c (check), causes vim to ask whether you would like to make the change
each time it finds text that matches the search-string. Pressing y replaces the
search-string, q terminates the command, l (last) makes the replacement and quits,
a (all) makes all remaining replacements, and n continues the search without mak-
ing that replacement.

The address string need not be the same as the search-string. For example,

:/candle/s/wick/flame/

substitutes flame for the first occurrence of wick on the next line that contains the
string candle. Similarly,

:g/candle/s/wick/flame/

performs the same substitution for the first occurrence of wick on each line of the
file containing the string candle and

:g/candle/s/wick/flame/g

performs the same substitution for all occurrences of wick on each line that contains
the string candle.

If the search-string is the same as the address, you can leave the search-string
blank. For example, the command :/candle/s//lamp/ is equivalent to the command
:/candle/s/candle/lamp/.

Command Result

:%s/\<ten\>/10/g Replaces every occurrence of the word ten with the string 10

Example:

ten → 10

:.,.+10s/every/each/g Replaces every occurrence of the string every with the string each
on the current line through the tenth following line

Examples:

every → each

everything → eachthing

:s/\<short\>/ "&"/ Replaces the word short on the current line with "short" (enclosed
within quotation marks)

Example:

the shortest of the short → the shortest of the "short"

Table 6-6 Search and replace examples (continued)

180 Chapter 6 The vim Editor

Miscellaneous Commands

This section describes three commands that do not fit naturally into any other
groups.

Join

Join (J) The J (Join) command joins the line below the current line to the end of the current
line, inserting a SPACE between what was previously two lines and leaving the cursor
on this SPACE. If the current line ends with a period, vim inserts two SPACEs.

You can always “unjoin” (break) a line into two lines by replacing the SPACE or SPACEs
where you want to break the line with a RETURN.

Status

Status (CONTROL-G) The Status command, CONTROL-G, displays the name of the file you are editing, infor-
mation about whether the file has been modified or is a readonly file, the number of
the current line, the total number of lines in the Work buffer, and the percentage of
the Work buffer preceding the current line. You can also use :f to display status
information. Following is a sample status line:

"/usr/share/dict/words" [readonly] line 28501 of 98569 --28%-- col 1

. (Period)

. The . (period) command repeats the most recent command that made a change. If
you had just given a d2w command (delete the next two words), for example, the .
command would delete the next two words. If you had just inserted text, the . com-
mand would repeat the insertion of the same text. This command is useful if you
want to change some occurrences of a word or phrase in the Work buffer. Search for
the first occurrence of the word (use /) and then make the change you want (use
cw). You can then use n to search for the next occurrence of the word and . to make
the same change to it. If you do not want to make the change, give the n command
again to find the next occurrence.

mark
Typewritten Text
Blank

269269

E
X
C
E
R
P
T

8Chapter8This chapter picks up where Chapter 5 left off by focusing on the
Bourne Again Shell (bash). It notes where tcsh implementation of a
feature differs from that of bash and, if appropriate, directs you to
the page that discusses the alternative implementation. Chapter 10
expands on this chapter, exploring control flow commands and
more advanced aspects of programming the Bourne Again Shell
(bash). The bash home page is www.gnu.org/software/bash. The
bash info page is a complete Bourne Again Shell reference.

The Bourne Again Shell and TC Shell (tcsh) are command inter-
preters and high-level programming languages. As command
interpreters, they process commands you enter on the command
line in response to a prompt. When you use the shell as a pro-
gramming language, it processes commands stored in files called
shell scripts. Like other languages, shells have variables and con-
trol flow commands (for example, for loops and if statements).

When you use a shell as a command interpreter, you can cus-
tomize the environment you work in. You can make your
prompt display the name of the working directory, create a
function or an alias for cp that keeps it from overwriting certain
kinds of files, take advantage of keyword variables to change

In This Chapter

Startup Files 271

Redirecting Standard Error 275

Writing a Simple Shell Script 278

Job Control. 285

Manipulating the Directory
Stack . 302

Parameters and Variables 290

Processes 306

History . 308

Reexecuting and Editing
Commands 324

Functions . 327

Controlling bash: Features
and Options 344

Processing the Command Line. . . 334

8

The Bourne Again

Shell

270 Chapter 8 The Bourne Again Shell

aspects of how the shell works, and so on. You can also write shell scripts that do
your bidding—anything from a one-line script that stores a long, complex com-
mand to a longer script that runs a set of reports, prints them, and mails you a
reminder when the job is done. More complex shell scripts are themselves pro-
grams; they do not just run other programs. Chapter 10 has some examples of these
types of scripts.

Most system shell scripts are written to run under bash (or dash; see below). If you
will ever work in single-user or recovery mode—when you boot the system or per-
form system maintenance, administration, or repair work, for example—it is a good
idea to become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 5,
explains how to create and run simple shell scripts, discusses job control, introduces
the basic aspects of shell programming, talks about history and aliases, and
describes command-line expansion. Chapter 9 covers interactive use of the TC Shell
and TC Shell programming, and Chapter 10 presents some more challenging shell
programming problems.

mark
Typewritten Text
Blank

292 Chapter 8 The Bourne Again Shell

User-Created Variables

The first line in the following example declares the variable named person and
initializes it with the value max (use set person = max in tcsh):

$ person=max
$ echo person
person
$ echo $person
max

Parameter
substitution

Because the echo builtin copies its arguments to standard output, you can use it to
display the values of variables. The second line of the preceding example shows that
person does not represent max. Instead, the string person is echoed as person. The
shell substitutes the value of a variable only when you precede the name of the vari-
able with a dollar sign ($). Thus the command echo $person displays the value of
the variable person; it does not display $person because the shell does not pass
$person to echo as an argument. Because of the leading $, the shell recognizes that
$person is the name of a variable, substitutes the value of the variable, and passes
that value to echo. The echo builtin displays the value of the variable—not its
name—never “knowing” that you called it with a variable.

Quoting the $ You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
max
$ echo "$person"
max
$ echo '$person'
$person
$ echo \$person
$person

Parameters and Variables 293

SPACEs Because they do not prevent variable substitution but do turn off the special mean-
ings of most other characters, double quotation marks are useful when you assign
values to variables and when you use those values. To assign a value that contains
SPACEs or TABs to a variable, use double quotation marks around the value. Although
double quotation marks are not required in all cases, using them is a good habit.

$ person="max and zach"
$ echo $person
max and zach
$ person=max and zach
bash: and: command not found

When you reference a variable whose value contains TABs or multiple adjacent SPACEs,
you need to use quotation marks to preserve the spacing. If you do not quote the
variable, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="max and zach"
$ echo $person
max and zach
$ echo "$person"
max and zach

Pathname
expansion in
assignments

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such
as * or ?, the shell may expand that variable.

The first line in the following sequence of commands assigns the string max* to the
variable memo. The Bourne Again Shell does not expand the string because bash
does not perform pathname expansion (page 136) when it assigns a value to a vari-
able. All shells process a command line in a specific order. Within this order bash
(but not tcsh) expands variables before it interprets commands. In the following
echo command line, the double quotation marks quote the asterisk (*) in the
expanded value of $memo and prevent bash from performing pathname expansion
on the expanded memo variable before passing its value to the echo command:

$ memo=max*
$ echo "$memo"
max*

All shells interpret special characters as special when you reference a variable that
contains an unquoted special character. In the following example, the shell expands
the value of the memo variable because it is not quoted:

$ ls
max.report
max.summary
$ echo $memo
max.report max.summary

294 Chapter 8 The Bourne Again Shell

Here the shell expands the $memo variable to max*, expands max* to max.report
and max.summary, and passes these two values to echo.

optional
Braces The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE},

in which the variable name is enclosed by ${}. The braces insulate the variable name
from adjacent characters. Braces are necessary when catenating a variable value
with a string:

$ PREF=counter
$ WAY=$PREFclockwise
$ FAKE=$PREFfeit
$ echo $WAY $FAKE

$

The preceding example does not work as planned. Only a blank line is output
because, although the symbols PREFclockwise and PREFfeit are valid variable
names, they are not set. By default the shell evaluates an unset variable as an empty
(null) string and displays this value (bash) or generates an error message (tcsh). To
achieve the intent of these statements, refer to the PREF variable using braces:

$ PREF=counter
$ WAY=${PREF}clockwise
$ FAKE=${PREF}feit
$ echo $WAY $FAKE
counterclockwise counterfeit

The Bourne Again Shell refers to the arguments on its command line by position,
using the special variables $1, $2, $3, and so forth up to $9. If you wish to refer to
arguments past the ninth argument, you must use braces: ${10}. The name of the
command is held in $0 (page 441).

unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, assign a null
value to the variable (use set person = in tcsh):

$ person=
$ echo $person

$

You can remove a variable using the unset builtin. The following command removes
the variable person:

$ unset person

Parameters and Variables 295

Variable Attributes

This section discusses attributes and explains how to assign them to variables.

readonly: Makes the Value of a Variable Permanent

You can use the readonly builtin (not in tcsh) to ensure that the value of a variable
cannot be changed. The next example declares the variable person to be readonly.
You must assign a value to a variable before you declare it to be readonly; you can-
not change its value after the declaration. When you attempt to unset or change the
value of a readonly variable, the shell displays an error message:

$ person=zach
$ echo $person
zach
$ readonly person
$ person=helen
bash: person: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly
shell variables. This list includes keyword variables that are automatically set as read-
only as well as keyword or user-created variables that you have declared as readonly.
See page 296 for an example (readonly and declare –r produce the same output).

declare and typeset: Assign Attributes to Variables

The declare and typeset builtins (two names for the same command, neither of
which is available in tcsh) set attributes and values for shell variables. Table 8-3 lists
five of these attributes.

The following commands declare several variables and set some attributes. The first
line declares person1 and assigns it a value of max. This command has the same
effect with or without the word declare.

$ declare person1=max
$ declare -r person2=zach
$ declare -rx person3=helen
$ declare -x person4

Table 8-3 Variable attributes (typeset or declare)

Attribute Meaning

–a Declares a variable as an array (page 434)

–f Declares a variable to be a function name (page 327)

–i Declares a variable to be of type integer (page 296)

–r Makes a variable readonly; also readonly (page 295)

–x Exports a variable (makes it global); also export (page 436)

296 Chapter 8 The Bourne Again Shell

The readonly and export builtins are synonyms for the commands declare –r and
declare –x, respectively. You can declare a variable without assigning a value to it,
as the preceding declaration of the variable person4 illustrates. This declaration
makes person4 available to all subshells (i.e., makes it global). Until an assignment
is made to the variable, it has a null value.

You can list the options to declare separately in any order. The following is equivalent
to the preceding declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of – when you want to remove an attribute from a vari-
able. You cannot remove the readonly attribute. After the following command is
given, the variable person3 is no longer exported but it is still readonly.

$ declare +x person3

You can use typeset instead of declare.

Listing variable
attributes

Without any arguments or options, declare lists all shell variables. The same list is
output when you run set (page 442) without any arguments.

If you use a declare builtin with options but no variable names as arguments, the
command lists all shell variables that have the indicated attributes set. For example,
the command declare –r displays a list of all readonly shell variables. This list is the
same as that produced by the readonly command without any arguments. After the
declarations in the preceding example have been given, the results are as follows:

$ declare -r
declare -ar BASH_VERSINFO='([0]="3" [1]="2" [2]="39" [3]="1" ...)'
declare -ir EUID="500"
declare -ir PPID="936"
declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:history:..."
declare -ir UID="500"
declare -r person2="zach"
declare -rx person3="helen"

The first five entries are keyword variables that are automatically declared as read-
only. Some of these variables are stored as integers (–i). The –a option indicates that
BASH_VERSINFO is an array variable; the value of each element of the array is
listed to the right of an equal sign.

Integer By default the values of variables are stored as strings. When you perform arith-
metic on a string variable, the shell converts the variable into a number, manipulates
it, and then converts it back to a string. A variable with the integer attribute is
stored as an integer. Assign the integer attribute as follows:

$ declare -i COUNT

531531

E
X
C
E
R
P
T

12Chapter12AWK is a pattern-scanning and processing language that
searches one or more files for records (usually lines) that
match specified patterns. It processes lines by performing
actions, such as writing the record to standard output or
incrementing a counter, each time it finds a match. Unlike
procedural languages, AWK is data driven: You describe the
data you want to work with and tell AWK what to do with
the data once it finds it.

You can use AWK to generate reports or filter text. It works
equally well with numbers and text; when you mix the two,
AWK usually comes up with the right answer. The authors
of AWK (Alfred V. Aho, Peter J. Weinberger, and Brian W.
Kernighan) designed the language to be easy to use. To
achieve this end they sacrificed execution speed in the origi-
nal implementation.

In This Chapter

Syntax . 532

Arguments 532

Options . 533

Patterns . 534

Actions. 535

Variables . 535

Functions . 536

Associative Arrays. 538

Control Structures 539

Examples . 541

getline: Controlling Input 558

Coprocess: Two-Way I/O. 560

Getting Input from a Network. . . . 562

12

The AWK Pattern

Processing Language

538 Chapter 12 The AWK Pattern Processing Language

Associative Arrays

The associative array is one of gawk’s most powerful features. These arrays use
strings as indexes. Using an associative array, you can mimic a traditional array by
using numeric strings as indexes. In Perl, an associative array is called a hash
(page 500).

You assign a value to an element of an associative array using the following syntax:

array[string] = value

where array is the name of the array, string is the index of the element of the array
you are assigning a value to, and value is the value you are assigning to that element.

Using the following syntax, you can use a for structure with an associative array:

for (elem in array) action

where elem is a variable that takes on the value of each element of the array as the
for structure loops through them, array is the name of the array, and action is the
action that gawk takes for each element in the array. You can use the elem variable
in this action.

See page 551 for example programs that use associative arrays.

printf
You can use the printf command in place of print to control the format of the output
gawk generates. The gawk version of printf is similar to that found in the C language.
A printf command has the following syntax:

printf "control-string", arg1, arg2, ..., argn

The control-string determines how printf formats arg1, arg2, ..., argn. These argu-
ments can be variables or other expressions. Within the control-string you can use \n to
indicate a NEWLINE and \t to indicate a TAB. The control-string contains conversion specifi-
cations, one for each argument. A conversion specification has the following syntax:

%[–][x[.y]]conv

where – causes printf to left-justify the argument, x is the minimum field width, and
.y is the number of places to the right of a decimal point in a number. The conv indi-
cates the type of numeric conversion and can be selected from the letters in
Table 12-5. See page 548 for example programs that use printf.

Table 12-5 Numeric conversion

conv Type of conversion

d Decimal

e Exponential notation

f Floating-point number

Language Basics 539

Control Structures

Control (flow) statements alter the order of execution of commands within a
gawk program. This section details the if...else, while, and for control structures.
In addition, the break and continue statements work in conjunction with the con-
trol structures to alter the order of execution of commands. See page 398 for
more information on control structures. You do not need to use braces around
commands when you specify a single, simple command.

if...else

The if...else control structure tests the status returned by the condition and transfers
control based on this status. The syntax of an if...else structure is shown below. The
else part is optional.

if (condition)
{commands}

[else
{commands}]

The simple if statement shown here does not use braces:

if ($5 <= 5000) print $0

Next is a gawk program that uses a simple if...else structure. Again, there are no braces.

$ cat if1
BEGIN {

nam="sam"
if (nam == "max")

print "nam is max"
else

print "nam is not max, it is", nam
}

$ gawk -f if1
nam is not max, it is sam

while

The while structure loops through and executes the commands as long as the
condition is true. The syntax of a while structure is

while (condition)
{commands}

conv Type of conversion

g Use f or e, whichever is shorter

o Unsigned octal

s String of characters

x Unsigned hexadecimal

Table 12-5 Numeric conversion (continued)

540 Chapter 12 The AWK Pattern Processing Language

The next gawk program uses a simple while structure to display powers of 2. This
example uses braces because the while loop contains more than one statement. This
program does not accept input; all processing takes place when gawk executes the
statements associated with the BEGIN pattern.

$ cat while1
BEGIN{

n = 1
while (n <= 5)

{
print "2^" n, 2**n
n++
}

}

$ gawk -f while1
1^2 2
2^2 4
3^2 8
4^2 16
5^2 32

for
The syntax of a for control structure is

for (init; condition; increment)
{commands}

A for structure starts by executing the init statement, which usually sets a counter
to 0 or 1. It then loops through the commands as long as the condition remains
true. After each loop it executes the increment statement. The for1 gawk program
does the same thing as the preceding while1 program except that it uses a for state-
ment, which makes the program simpler:

$ cat for1
BEGIN {
 for (n=1; n <= 5; n++)
 print "2^" n, 2**n
 }

$ gawk -f for1
1^2 2
2^2 4
3^2 8
4^2 16
5^2 32

The gawk utility supports an alternative for syntax for working with associative
arrays:

for (var in array)
{commands}

Examples 541

This for structure loops through elements of the associative array named array,
assigning the value of the index of each element of array to var each time through
the loop. The following line of code (from the program on page 551) demonstrates
a for structure:

END {for (name in manuf) print name, manuf[name]}

break

The break statement transfers control out of a for or while loop, terminating execution
of the innermost loop it appears in.

continue

The continue statement transfers control to the end of a for or while loop, causing
execution of the innermost loop it appears in to continue with the next iteration.

Examples

cars data file Many of the examples in this section work with the cars data file. From left to right,
the columns in the file contain each car’s make, model, year of manufacture, mile-
age in thousands of miles, and price. All whitespace in this file is composed of single
TABs (the file does not contain any SPACEs).

$ cat cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
ford taurus 2004 10 17000
toyota rav4 2002 180 750
chevy impala 1985 85 1550
ford explor 2003 25 9500

Missing pattern A simple gawk program is

{ print }

This program consists of one program line that is an action. Because the pattern is
missing, gawk selects all lines of input. When used without any arguments the print
command displays each selected line in its entirety. This program copies the input to
standard output.

$ gawk '{ print }' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

542 Chapter 12 The AWK Pattern Processing Language

Missing action The next program has a pattern but no explicit action. The slashes indicate that
chevy is a regular expression.

/chevy/

In this case gawk selects from the input just those lines that contain the string chevy.
When you do not specify an action, gawk assumes the action is print. The following
example copies to standard output all lines from the input that contain the string
chevy:

$ gawk '/chevy/' cars
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
chevy impala 1985 85 1550

Single quotation
marks

Although neither gawk nor shell syntax requires single quotation marks on the com-
mand line, it is still a good idea to use them because they can prevent problems. If
the gawk program you create on the command line includes SPACEs or characters that
are special to the shell, you must quote them. Always enclosing the program in sin-
gle quotation marks is the easiest way to make sure you have quoted any characters
that need to be quoted.

Fields The next example selects all lines from the file (it has no pattern). The braces
enclose the action; you must always use braces to delimit the action so gawk can
distinguish it from the pattern. This example displays the third field ($3), a SPACE

(the output field separator, indicated by the comma), and the first field ($1) of each
selected line:

$ gawk '{print $3, $1}' cars
1970 plym
1999 chevy
1965 ford
1998 volvo
...

The next example, which includes both a pattern and an action, selects all lines that
contain the string chevy and displays the third and first fields from the selected
lines:

$ gawk '/chevy/ {print $3, $1}' cars
1999 chevy
2000 chevy
1985 chevy

In the following example, gawk selects lines that contain a match for the regular
expression h. Because there is no explicit action, gawk displays all the lines it selects.

$ gawk '/h/' cars
chevy malibu 1999 60 3000
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
honda accord 2001 30 6000
chevy impala 1985 85 1550

Examples 543

~ (matches
operator)

The next pattern uses the matches operator (~) to select all lines that contain the letter
h in the first field:

$ gawk '$1 ~ /h/' cars
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
honda accord 2001 30 6000
chevy impala 1985 85 1550

The caret (^) in a regular expression forces a match at the beginning of the line
(page 890) or, in this case, at the beginning of the first field:

$ gawk '$1 ~ /^h/' cars
honda accord 2001 30 6000

Brackets surround a character class definition (page 889). In the next example, gawk
selects lines that have a second field that begins with t or m and displays the third
and second fields, a dollar sign, and the fifth field. Because there is no comma
between the "$" and the $5, gawk does not put a SPACE between them in the output.

$ gawk '$2 ~ /^[tm]/ {print $3, $2, "$" $5}' cars
1999 malibu $3000
1965 mustang $10000
2003 thundbd $10500
2000 malibu $3500
2004 taurus $17000

Dollar signs The next example shows three roles a dollar sign can play in a gawk program. First,
a dollar sign followed by a number names a field. Second, within a regular expres-
sion a dollar sign forces a match at the end of a line or field (5$). Third, within a
string a dollar sign represents itself.

$ gawk '$3 ~ /5$/ {print $3, $1, "$" $5}' cars
1965 ford $10000
1985 bmw $450
1985 chevy $1550

In the next example, the equal-to relational operator (==) causes gawk to perform a
numeric comparison between the third field in each line and the number 1985. The
gawk command takes the default action, print, on each line where the comparison
is true.

$ gawk '$3 == 1985' cars
bmw 325i 1985 115 450
chevy impala 1985 85 1550

The next example finds all cars priced at or less than $3,000.

$ gawk '$5 <= 3000' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
bmw 325i 1985 115 450
toyota rav4 2002 180 750
chevy impala 1985 85 1550

544 Chapter 12 The AWK Pattern Processing Language

Textual
comparisons

When you use double quotation marks, gawk performs textual comparisons by
using the ASCII (or other local) collating sequence as the basis of the comparison. In
the following example, gawk shows that the strings 450 and 750 fall in the range
that lies between the strings 2000 and 9000, which is probably not the intended
result.

$ gawk '"2000" <= $5 && $5 < "9000"' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
toyota rav4 2002 180 750

When you need to perform a numeric comparison, do not use quotation marks. The
next example gives the intended result. It is the same as the previous example except
it omits the double quotation marks.

$ gawk '2000 <= $5 && $5 < 9000' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
honda accord 2001 30 6000

, (range operator) The range operator (,) selects a group of lines. The first line it selects is the one
specified by the pattern before the comma. The last line is the one selected by
the pattern after the comma. If no line matches the pattern after the comma,
gawk selects every line through the end of the input. The next example selects
all lines, starting with the line that contains volvo and ending with the line that
contains bmw.

$ gawk '/volvo/ , /bmw/' cars
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
bmw 325i 1985 115 450

After the range operator finds its first group of lines, it begins the process again,
looking for a line that matches the pattern before the comma. In the following
example, gawk finds three groups of lines that fall between chevy and ford.
Although the fifth line of input contains ford, gawk does not select it because at the
time it is processing the fifth line, it is searching for chevy.

$ gawk '/chevy/ , /ford/' cars
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000

Examples 545

ford taurus 2004 10 17000
chevy impala 1985 85 1550
ford explor 2003 25 9500

––file option When you are writing a longer gawk program, it is convenient to put the program in
a file and reference the file on the command line. Use the –f (––file) option followed
by the name of the file containing the gawk program.

BEGIN The following gawk program, which is stored in a file named pr_header, has two
actions and uses the BEGIN pattern. The gawk utility performs the action associ-
ated with BEGIN before processing any lines of the data file: It displays a header.
The second action, {print}, has no pattern part and displays all lines from the input.

$ cat pr_header
BEGIN {print "Make Model Year Miles Price"}
 {print}

$ gawk -f pr_header cars
Make Model Year Miles Price
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

The next example expands the action associated with the BEGIN pattern. In the
previous and the following examples, the whitespace in the headers is composed of
single TABs, so the titles line up with the columns of data.

$ cat pr_header2
BEGIN {
print "Make Model Year Miles Price"
print "--"
}
 {print}

$ gawk -f pr_header2 cars
Make Model Year Miles Price
--
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

560 Chapter 12 The AWK Pattern Processing Language

Coprocess: Two-Way I/O

A coprocess is a process that runs in parallel with another process. Starting with
version 3.1, gawk can invoke a coprocess to exchange information directly with a
background process. A coprocess can be useful when you are working in a cli-
ent/server environment, setting up an SQL (page 980) front end/back end, or
exchanging data with a remote system over a network. The gawk syntax identifies a
coprocess by preceding the name of the program that starts the background process
with a |& operator.

Advanced gawk Programming 561

The coprocess command must be a filter (i.e., it reads from standard input and
writes to standard output) and must flush its output whenever it has a complete line
rather than accumulating lines for subsequent output. When a command is invoked
as a coprocess, it is connected via a two-way pipe to a gawk program so you can
read from and write to the coprocess.

to_upper When used alone the tr utility (page 864) does not flush its output after each line.
The to_upper shell script is a wrapper for tr that does flush its output; this filter can
be run as a coprocess. For each line read, to_upper writes the line, translated to
uppercase, to standard output. Remove the # before set –x if you want to_upper to
display debugging output.

$ cat to_upper
#!/bin/bash
#set -x
while read arg
do

echo "$arg" | tr '[a-z]' '[A-Z]'
done

$ echo abcdef | ./to_upper
ABCDEF

The g6 program invokes to_upper as a coprocess. This gawk program reads stan-
dard input or a file specified on the command line, translates the input to uppercase,
and writes the translated data to standard output.

$ cat g6
{
print $0 |& "to_upper"
"to_upper" |& getline hold
print hold
}

$ gawk -f g6 < alpha
AAAAAAAAA
BBBBBBBBB
CCCCCCCCC
DDDDDDDDD

The g6 program has one compound statement, enclosed within braces, comprising
three statements. Because there is no pattern, gawk executes the compound state-
ment once for each line of input.

In the first statement, print $0 sends the current record to standard output. The |&
operator redirects standard output to the program named to_upper, which is run-
ning as a coprocess. The quotation marks around the name of the program are
required. The second statement redirects standard output from to_upper to a getline
statement, which copies its standard input to the variable named hold. The third
statement, print hold, sends the contents of the hold variable to standard output.

Only gawk supports coprocesses
tip The awk and mawk utilities do not support coprocesses. Only gawk supports coprocesses.

562 Chapter 12 The AWK Pattern Processing Language

Getting Input from a Network

Building on the concept of a coprocess, gawk can exchange information with a pro-
cess on another system via an IP network connection. When you specify one of the
special filenames that begins with /inet/, gawk processes the request using a network
connection. The format of these special filenames is

/inet/protocol/local-port/remote-host/remote-port

where protocol is usually tcp but can be udp, local-port is 0 (zero) if you want gawk
to pick a port (otherwise it is the number of the port you want to use), remote-host
is the IP address (page 960) or fully qualified domain name (page 955) of the
remote host, and remote-port is the port number on the remote host. Instead of a
port number in local-port and remote-port, you can specify a service name such as
http or ftp.

The g7 program reads the rfc-retrieval.txt file from the server at www.rfc-edi-
tor.org. On www.rfc-editor.org the file is located at /rfc/rfc-retrieval.txt. The first
statement in g7 assigns the special filename to the server variable. The filename
specifies a TCP connection, allows the local system to select an appropriate port,
and connects to www.rfc-editor.org on port 80. You can use http in place of 80 to
specify the standard HTTP port.

The second statement uses a coprocess to send a GET request to the remote server.
This request includes the pathname of the file gawk is requesting. A while loop
uses a coprocess to redirect lines from the server to getline. Because getline has no
variable name as an argument, it saves its input in the current record buffer $0.
The final print statement sends each record to standard output. Experiment with
this script, replacing the final print statement with gawk statements that process
the file.

$ cat g7
BEGIN {

set variable named server
to special networking filename
server = "/inet/tcp/0/www.rfc-editor.org/80"

use coprocess to send GET request to remote server
print "GET /rfc/rfc-retrieval.txt" |& server

while loop uses coprocess to redirect
output from server to getline
while (server |& getline)

print $0
}

Exercises 563

$ gawk -f g7

 Where and how to get new RFCs
 =============================

RFCs may be obtained via FTP or HTTP or email from many RFC repositories.
The official repository for RFCs is:

 http://www.rfc-editor.org/
...

mark
Typewritten Text
Blank

597

E
X
C
E
R
P
T

I

PART V

Command Reference

mark
Typewritten Text
Blank

sample O 605

sa
m

pl
e
O

sample O

sample O ← OS X in an oval indicates this utility runs under Mac OS X only.

Brief description of what the utility does

sample [options] arguments

Following the syntax line is a description of the utility. The syntax line shows how to run the utility
from the command line. Options and arguments enclosed in brackets ([]) are not required. Enter
words that appear in this italic typeface as is. Words that you must substitute when you type appear
in this bold italic typeface. Words listed as arguments to a command identify single arguments (for
example, source-file) or groups of similar arguments (for example, directory-list).

Arguments This section describes the arguments you can use when you run the utility. The
argument itself, as shown in the preceding syntax line, is printed in this bold italic
typeface.

Options This section lists some of the options you can use with the command. Unless other-
wise specified, you must precede options with one or two hyphens. Most commands
accept a single hyphen before multiple options (page 119). Options in this section
are ordered alphabetically by short (single-hyphen) options. If an option has only a
long version (two hyphens), it is ordered by its long option. Following are some
sample options:

––delimiter=dchar
–d dchar

This option includes an argument. The argument is set in a bold italic typeface
in both the heading and the description. You substitute another word (file-
name, string of characters, or other value) for any arguments you see in this
typeface. Type characters that are in bold type (such as the ––delimiter and –d)
as is.

––make-dirs –m This option has a long and a short version. You can use either option; they
are equivalent. This option description ends with Linux in a box, indicating
it is available under Linux only. Options not followed by Linux or OS X are
available under both operating systems. L

–t (table of contents) This simple option is preceded by a single hyphen and not
followed by arguments. It has no long version. The table of contents appearing
in parentheses at the beginning of the description is a cue, suggestive of what
the option letter stands for. This option description ends with OS X in a box,
indicating it is available under OS X only. Options not followed by Linux or
OS X are available under both operating systems. O

606 sample O

Discussion This optional section describes how to use the utility and identifies any quirks it
may have.

Notes This section contains miscellaneous notes—some important and others merely
interesting.

Examples This section contains examples illustrating how to use the utility. This section is a
tutorial, so it takes a more casual tone than the preceding sections of the description.

bzip2 615

bz
ip

2

bzip2
Compresses or decompresses files

bzip2 [options] [file-list]
bunzip2 [options] [file-list]
bzcat [options] [file-list]
bzip2recover [file]

The bzip2 utility compresses files; bunzip2 restores files compressed with bzip2; and bzcat displays files
compressed with bzip2.

Arguments The file-list is a list of one or more files (no directories) that are to be compressed or
decompressed. If file-list is empty or if the special option – is present, bzip2 reads
from standard input. The ––stdout option causes bzip2 to write to standard output.

Options Under Linux, bzip2, bunzip2, and bzcat accept the common options described on
page 603.

––stdout –c Writes the results of compression or decompression to standard output.

––decompress –d Decompresses a file compressed with bzip2. This option with bzip2 is equivalent
to the bunzip2 command.

––fast or
––best

–n Sets the block size when compressing a file. The n is a digit from 1 to 9, where
1 (––fast) generates a block size of 100 kilobytes and 9 (––best) generates a
block size of 900 kilobytes. The default level is 9. The options ––fast and
––best are provided for compatibility with gzip and do not necessarily yield the
fastest or best compression.

––force –f Forces compression even if a file already exists, has multiple links, or comes
directly from a terminal. The option has a similar effect with bunzip2.

––keep –k Does not delete input files while compressing or decompressing them.

––quiet –q Suppresses warning messages; does display critical messages.

––test –t Verifies the integrity of a compressed file. Displays nothing if the file is OK.

––verbose –v For each file being compressed, displays the name of the file, the compression
ratio, the percentage of space saved, and the sizes of the decompressed and
compressed files.

The Mac OS X version of bzip2 accepts long options

tip Options for bzip2 preceded by a double hyphen (––) work under Mac OS X as well as under
Linux.

616 bzip2

Discussion The bzip2 and bunzip2 utilities work similarly to gzip and gunzip; see the discussion
of gzip (page 725) for more information. Normally bzip2 does not overwrite a file;
you must use ––force to overwrite a file during compression or decompression.

Notes See page 62 for additional information on and examples of tar.

The bzip2 home page is bzip.org.

The bzip2 utility does a better job of compressing files than does gzip.

Use the ––bzip2 modifier with tar (page 847) to compress archive files with bzip2.

bzcat file-list Works like cat except it uses bunzip2 to decompress file-list as it copies files to stan-
dard output.

bzip2recover Attempts to recover a damaged file that was compressed with bzip2.

Examples In the following example, bzip2 compresses a file and gives the resulting file the
same name with a .bz2 filename extension. The –v option displays statistics about
the compression.

$ ls -l
total 728
-rw-r--r-- 1 sam sam 737414 Feb 20 19:05 bigfile
$ bzip2 -v bigfile
 bigfile: 3.926:1, 2.037 bits/byte, 74.53% saved, 737414 in, 187806 out
$ ls -l
total 188
-rw-r--r-- 1 sam sam 187806 Feb 20 19:05 bigfile.bz2

Next touch creates a file with the same name as the original file; bunzip2 refuses to
overwrite the file in the process of decompressing bigfile.bz2. The ––force option
enables bunzip2 to overwrite the file.

$ touch bigfile
$ bunzip2 bigfile.bz2
bunzip2: Output file bigfile already exists.
$ bunzip2 --force bigfile.bz2
$ ls -l
total 728
-rw-r--r-- 1 sam sam 737414 Feb 20 19:05 bigfile

mark
Typewritten Text
Blank

640 cp

cp

cp
Copies files

cp [options] source-file destination-file
cp [options] source-file-list destination-directory

The cp utility copies one or more files. It can either make a copy of a single file (first format) or copy
one or more files to a directory (second format). With the –R option, cp can copy directory hierarchies.

Arguments The source-file is the pathname of the file that cp makes a copy of. The destination-
file is the pathname that cp assigns to the resulting copy of the file.

The source-file-list is a list of one or more pathnames of files that cp makes copies
of. The destination-directory is the pathname of the directory in which cp places
the copied files. With this format, cp gives each copied file the same simple filename
as its source-file.

The –R option enables cp to copy directory hierarchies recursively from the source-
file-list into the destination-directory.

Options Under Linux, cp accepts the common options described on page 603. Options preceded
by a double hyphen (––) work under Linux only. Except as noted, options named with
a single letter and preceded by a single hyphen work under Linux and OS X.

––archive –a Attempts to preserve the owner, group, permissions, access date, and modifi-
cation date of source file(s) while copying recursively without dereferencing
symbolic links. Same as –dpR. L

––backup –b If copying a file would remove or overwrite an existing file, this option makes
a backup copy of the file that would be overwritten. The backup copy has the
same name as the destination-file with a tilde (~) appended to it. When you
use both ––backup and ––force, cp makes a backup copy when you try to copy
a file over itself. For more backup options, search for Backup options in the
core utils info page. L

–d For each file that is a symbolic link, copies the symbolic link, not the file the
link points to. Also preserves hard links in destination-files that exist between
corresponding source-files. This option is equivalent to ––no-dereference and
––preserve=links. L

––force –f When the destination-file exists and cannot be opened for writing, causes cp
to try to remove destination-file before copying source-file. This option is use-
ful when the user copying a file does not have write permission to an existing
destination-file but does have write permission to the directory containing the

cp 641

destination-file. Use this option with –b to back up a destination file before
removing or overwriting it.

–H (partial dereference) For each file that is a symbolic link, copies the file the link
points to, not the symbolic link itself. This option affects files specified on the
command line; it does not affect files found while descending a directory hier-
archy. This option treats files that are not symbolic links normally. Under
OS X works with –R only. See page 623 for an example of the use of the –H
versus –L options.

––interactive –i Prompts you whenever cp would overwrite a file. If you respond with a string
that starts with y or Y, cp copies the file. If you enter anything else, cp does not
copy the file.

––dereference –L (dereference) For each file that is a symbolic link, copies the file the link points
to, not the symbolic link itself. This option affects all files and treats files that
are not symbolic links normally. Under OS X works with –R only. See
page 623 for an example of the use of the –H versus –L options.

––no-dereference –P (no dereference) For each file that is a symbolic link, copies the symbolic link,
not the file the link points to. This option affects all files and treats files that
are not symbolic links normally. Under OS X works with –R only. See
page 625 for an example of the use of the –P option.

––preserve[=attr] –p Creates a destination-file with the same owner, group, permissions, access
date, and modification date as the source-file. The –p option does not take an
argument.

Without attr, ––preserve works as described above. The attr is a comma-
separated list that can include mode (permissions and ACLs), ownership
(owner and group), timestamps (access and modification dates), links (hard
links), and all (all attributes).

––parents Copies a relative pathname to a directory, creating directories as needed. See
the “Examples” section. L

––recursive –R or –r
Recursively copies directory hierarchies including ordinary files. Under Linux,
the ––no-dereference (–d) option is implied: With the –R, –r, or ––recursive
option, cp copies the links (not the files the links point to). The –r and
––recursive options are available under Linux only.

––update –u Copies only when the destination-file does not exist or when it is older
than the source-file (i.e., this option will not overwrite a newer destination
file). L

––verbose –v Displays the name of each file as cp copies it.

642 cp

Notes Under Linux, cp dereferences symbolic links unless you use one or more of the –R,
–r, ––recursive, –P, –d, or ––no-dereference options. As explained on the previous
page, under Linux the –H option dereferences only symbolic links listed on the
command line. Under Mac OS X, without the –R option, cp always dereferences
symbolic links; with the –R option, cp does not dereference symbolic links (–P is the
default) unless you specify –H or –L.

Many options are available for cp under Linux. See the coreutils info page for a
complete list.

If the destination-file exists before you execute a cp command, cp overwrites the
file, destroying the contents but leaving the access privileges, owner, and group
associated with the file as they were.

If the destination-file does not exist, cp uses the access privileges of the source-file.
The user who copies the file becomes the owner of the destination-file and the
user’s login group becomes the group associated with the destination-file.

Using the –p option without any arguments causes cp to attempt to set the owner,
group, permissions, access date, and modification date to match those of the
source-file.

Unlike with the ln utility (page 740), the destination-file that cp creates is independent
of its source-file.

Under Mac OS X version 10.4 and later, cp copies extended attributes (page 928).

Examples The first command makes a copy of the file letter in the working directory. The
name of the copy is letter.sav.

$ cp letter letter.sav

The next command copies all files with filenames ending in .c into the archives
directory, which is a subdirectory of the working directory. Each copied file retains
its simple filename but has a new absolute pathname. The –p (––preserve) option
causes the copied files in archives to have the same owner, group, permissions,
access date, and modification date as the source files.

$ cp -p *.c archives

The next example copies memo from Sam’s home directory to the working directory:

$ cp ~sam/memo .

The next example runs under Linux and uses the ––parents option to copy the file
memo/thursday/max to the dir directory as dir/memo/thursday/max. The find util-
ity shows the newly created directory hierarchy.

cp 643

$ cp --parents memo/thursday/max dir
$ find dir
dir
dir/memo
dir/memo/thursday
dir/memo/thursday/max

The following command copies the files named memo and letter into another direc-
tory. The copies have the same simple filenames as the source files (memo and letter)
but have different absolute pathnames. The absolute pathnames of the copied files
are /home/sam/memo and /home/sam/letter, respectively.

$ cp memo letter /home/sam

The final command demonstrates one use of the –f (––force) option. Max owns the
working directory and tries unsuccessfully to copy one over another file (me) that
he does not have write permission for. Because he has write permission to the direc-
tory that holds me, Max can remove the file but cannot write to it. The –f (––force)
option unlinks, or removes, me and then copies one to the new file named me.

$ ls -ld
drwxrwxr-x 2 max max 4096 Oct 21 22:55 .
$ ls -l
-rw-r--r-- 1 root root 3555 Oct 21 22:54 me
-rw-rw-r-- 1 max max 1222 Oct 21 22:55 one
$ cp one me
cp: cannot create regular file 'me': Permission denied
$ cp -f one me
$ ls -l
-rw-r--r-- 1 max max 1222 Oct 21 22:58 me
-rw-rw-r-- 1 max max 1222 Oct 21 22:55 one

If Max had used the –b (––backup) option in addition to –f (––force), cp would
have created a backup of me named me~. Refer to “Directory Access Permissions”
on page 98 for more information.

652 cut

cut

cut
Selects characters or fields from input lines

cut [options] [file-list]

The cut utility selects characters or fields from lines of input and writes them to standard output.
Character and field numbering start with 1.

Arguments The file-list is a list of ordinary files. If you do not specify an argument or if you
specify a hyphen (–) in place of a filename, cut reads from standard input.

Options Under Linux, cut accepts the common options described on page 603. Options
preceded by a double hyphen (––) work under Linux only. Options named with a
single letter and preceded by a single hyphen work under Linux and OS X.

––characters=clist
–c clist

Selects the characters given by the column numbers in clist. The value of clist is
one or more comma-separated column numbers or column ranges. A range is
specified by two column numbers separated by a hyphen. A range of –n means
columns 1 through n; n– means columns n through the end of the line.

––delimiter=dchar
–d dchar

Specifies dchar as the input field delimiter. Also specifies dchar as the output
field delimiter unless you use the ––output-delimiter option. The default delim-
iter is a TAB character. Quote characters as necessary to protect them from shell
expansion.

––fields=flist –f flist
Selects the fields specified in flist. The value of flist is one or more comma-
separated field numbers or field ranges. A range is specified by two field numbers
separated by a hyphen. A range of –n means fields 1 through n; n– means fields n
through the last field. The field delimiter is a TAB character unless you use the
––delimiter option to change it.

––output-delimiter=ochar
Specifies ochar as the output field delimiter. The default delimiter is the TAB

character. You can specify a different delimiter by using the ––delimiter option.
Quote characters as necessary to protect them from shell expansion.

--only-delimited –s Copies only lines containing delimiters. Without this option, cut copies—but
does not modify—lines that do not contain delimiters.

cut 653

Notes Although limited in functionality, cut is easy to learn and use and is a good choice
when columns and fields can be selected without using pattern matching. Some-
times cut is used with paste (page 784).

Examples For the next two examples, assume that an ls –l command produces the following
output:

$ ls -l
total 2944
-rwxr-xr-x 1 zach pubs 259 Feb 1 00:12 countout
-rw-rw-r-- 1 zach pubs 9453 Feb 4 23:17 headers
-rw-rw-r-- 1 zach pubs 1474828 Jan 14 14:15 memo
-rw-rw-r-- 1 zach pubs 1474828 Jan 14 14:33 memos_save
-rw-rw-r-- 1 zach pubs 7134 Feb 4 23:18 tmp1
-rw-rw-r-- 1 zach pubs 4770 Feb 4 23:26 tmp2
-rw-rw-r-- 1 zach pubs 13580 Nov 7 08:01 typescript

The following command outputs the permissions of the files in the working direc-
tory. The cut utility with the –c option selects characters 2 through 10 from each
input line. The characters in this range are written to standard output.

$ ls -l | cut -c2-10
otal 2944
rwxr-xr-x
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--

The next command outputs the size and name of each file in the working directory.
The –f option selects the fifth and ninth fields from the input lines. The –d option
tells cut to use SPACEs, not TABs, as delimiters. The tr utility (page 864) with the –s
option changes sequences of more than one SPACE character into a single SPACE; other-
wise, cut counts the extra SPACE characters as separate fields.

$ ls -l | tr -s ' ' ' ' | cut -f5,9 -d' '

259 countout
9453 headers
1474828 memo
1474828 memos_save
7134 tmp1
4770 tmp2
13580 typescript

The last example displays a list of full names as stored in the fifth field of the
/etc/passwd file. The –d option specifies that the colon character be used as the field

654 cut

delimiter. Although this example works under Mac OS X, /etc/passwd does not
contain information about most users; see “Open Directory” on page 926 for more
information.

$ cat /etc/passwd
root:x:0:0:Root:/:/bin/sh
sam:x:401:50:Sam the Great:/home/sam:/bin/zsh
max:x:402:50:Max Wild:/home/max:/bin/bash
zach:x:504:500:Zach Brill:/home/zach:/bin/tcsh
hls:x:505:500:Helen Simpson:/home/hls:/bin/bash

$ cut -d: -f5 /etc/passwd
Root
Sam the Great
Max Wild
Zach Brill
Helen Simpson

ditto O 671

di
tt

o
O

ditto O
Copies files and creates and unpacks archives

ditto [options] source-file destination-file
ditto [options] source-file-list destination-directory
ditto –c [options] source-directory destination-archive
ditto –x [options] source-archive-list destination-directory

The ditto utility copies files and their ownership, timestamps, and other attributes, including
extended attributes (page 928). It can copy to and from cpio and zip archive files, as well as copy
ordinary files and directories.

Arguments The source-file is the pathname of the file that ditto is to make a copy of. The
destination-file is the pathname that ditto assigns to the resulting copy of the file.

The source-file-list specifies one or more pathnames of files and directories that ditto
makes copies of. The destination-directory is the pathname of the directory that
ditto copies the files and directories into. When you specify a destination-directory,
ditto gives each of the copied files the same simple filename as its source-file.

The source-directory is a single directory that ditto copies into the destination-archive.
The resulting archive holds copies of the contents of source-directory, but not the
directory itself.

The source-archive-list specifies one or more pathnames of archives that ditto
extracts into destination-directory.

Using a hyphen (–) in place of a filename or a directory name causes ditto to read
from standard input or write to standard output instead of reading from or writing
to that file or directory.

Options You cannot use the –c and –x options together.

–c (create archive) Creates an archive file.

––help Displays a help message.

–k (pkzip) Uses the zip format, instead of the default cpio (page 644) format, to
create or extract archives. For more information on zip, see the tip on page 62.

––norsrc (no resource) Ignores extended attributes. This option causes ditto to copy only
data forks (the default behavior under Mac OS X 10.3 and earlier).

––rsrc (resource) Copies extended attributes, including resource forks (the default
behavior under Mac OS X 10.4 and later). Also –rsrc and –rsrcFork.

–V (very verbose) Sends a line to standard error for each file, symbolic link, and
device node ditto copies.

–v (verbose) Sends a line to standard error for each directory ditto copies.

672 ditto O

–X (exclude) Prevents ditto from searching directories in filesystems other than the
filesystems that hold the files it was explicitly told to copy.

–x (extract archive) Extracts files from an archive file.

–z (compress) Uses gzip (page 724) or gunzip to compress or decompress cpio
archives.

Notes The ditto utility does not copy the locked attribute flag (page 931). The utility also
does not copy ACLs.

By default ditto creates and reads archives (page 941) in the cpio (page 644) format.

The ditto utility cannot list the contents of archive files; it can only create or extract
files from archives. Use pax or cpio to list the contents of cpio archives, and use unzip
with the –l option to list the contents of zip files.

Examples The following examples show three ways to back up a user’s home directory, including
extended attributes (except as mentioned in “Notes”), preserving timestamps and per-
missions. The first example copies Zach’s home directory to the volume (filesystem)
named Backups; the copy is a new directory named zach.0228:

$ ditto /Users/zach /Volumes/Backups/zach.0228

The next example copies Zach’s home directory into a single cpio-format archive file
on the volume named Backups:

$ ditto -c /Users/zach /Volumes/Backups/zach.0228.cpio

The next example copies Zach’s home directory into a zip archive:

$ ditto -c -k /Users/zach /Volumes/Backups/zach.0228.zip

Each of the next three examples restores the corresponding backup archive into
Zach’s home directory, overwriting any files that are already there:

$ ditto /Volumes/Backups/zach.0228 /Users/zach
$ ditto -x /Volumes/Backups/zach.0228.cpio /Users/zach
$ ditto -x -k /Volumes/Backups/zach.0228.zip /Users/zach

The following example copies the Scripts directory to a directory named Scripts-
Backups on the remote host bravo. It uses an argument of a hyphen in place of
source-directory locally to write to standard output and in place of destination-
directory on the remote system to read from standard input:

$ ditto -c Scripts - | ssh bravo ditto -x - ScriptsBackups

The final example copies the local startup disk (the root filesystem) to the volume
named Backups.root. Because some of the files can be read only by root, the script
must be run by a user with root privileges. The –X option keeps ditto from trying to
copy other volumes (filesystems) that are mounted under /.

ditto -X / /Volumes/Backups.root

mark
Typewritten Text
Blank

864 tr

tr

tr
Replaces specified characters

tr [options] string1 [string2]

The tr utility reads standard input and, for each input character, either maps it to an alternate charac-
ter, deletes the character, or leaves the character as is. This utility reads from standard input and
writes to standard output.

Arguments The tr utility is typically used with two arguments, string1 and string2. The position
of each character in the two strings is important: Each time tr finds a character from
string1 in its input, it replaces that character with the corresponding character from
string2.

With one argument, string1, and the –d (––delete) option, tr deletes the characters
specified in string1. The option –s (––squeeze-repeats) replaces multiple sequential
occurrences of characters in string1 with single occurrences (for example, abbc
becomes abc).

Ranges
A range of characters is similar in function to a character class within a regular
expression (page 889). GNU tr does not support ranges (character classes) enclosed
within brackets. You can specify a range of characters by following the character
that appears earlier in the collating sequence with a hyphen and the character that
comes later in the collating sequence. For example, 1–6 expands to 123456.
Although the range A–Z expands as you would expect in ASCII, this approach does
not work when you use the EBCDIC collating sequence, as these characters are not
sequential in EBCDIC. See “Character Classes” for a solution to this issue.

Character Classes
A tr character class is not the same as the character class described elsewhere in this
book. (GNU documentation uses the term list operator for what this book calls a
character class.) You specify a character class as '[:class:]', where class is one of the
character classes from Table V-32. You must specify a character class in string1
(and not string2) unless you are performing case conversion (see the “Examples”
section) or you use the –d and –s options together.

Table V-32 Character classes

Class Meaning

alnum Letters and digits

alpha Letters

tr 865

Options Options preceded by a double hyphen (––) work under Linux only. Except as noted,
options named with a single letter and preceded by a single hyphen work under
Linux and OS X.

––complement –c Complements string1, causing tr to match all characters except those in string1.

––delete –d Deletes characters that match those specified in string1. If you use this option
with the –s (––squeeze-repeats) option, you must specify both string1 and
string2 (see “Notes”).

––help Summarizes how to use tr, including the special symbols you can use in string1
and string2. L

––squeeze-repeats –s Replaces multiple sequential occurrences of a character in string1 with a single
occurrence of the character when you call tr with only one string argument. If
you use both string1 and string2, the tr utility first translates the characters in
string1 to those in string2; it then replaces multiple sequential occurrences of a
character in string2 with a single occurrence of the character.

––truncate-set1 –t Truncates string1 so it is the same length as string2 before processing input. L

Notes When string1 is longer than string2, the initial portion of string1 (equal in length to
string2) is used in the translation. When string1 is shorter than string2, tr uses the
last character of string1 to extend string1 to the length of string2. In this case tr
departs from the POSIX standard, which does not define a result.

Class Meaning

blank Whitespace

cntrl CONTROL characters

digit Digits

graph Printable characters but not SPACEs

lower Lowercase letters

print Printable characters including SPACEs

punct Punctuation characters

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

Table V-32 Character classes (continued)

866 tr

If you use the –d (––delete) and –s (––squeeze-repeats) options at the same time, tr
first deletes the characters in string1 and then replaces multiple sequential occur-
rences of a character in string2 with a single occurrence of the character.

Examples You can use a hyphen to represent a range of characters in string1 or string2. The
two command lines in the following example produce the same result:

$ echo abcdef | tr 'abcdef' 'xyzabc'
xyzabc
$ echo abcdef | tr 'a-f' 'x-za-c'
xyzabc

The next example demonstrates a popular method for disguising text, often
called ROT13 (rotate 13) because it replaces the first letter of the alphabet with
the thirteenth, the second with the fourteenth, and so forth.

$ echo The punchline of the joke is ... |
> tr 'A-M N-Z a-m n-z' 'N-Z A-M n-z a-m'
Gur chapuyvar bs gur wbxr vf ...

To make the text intelligible again, reverse the order of the arguments to tr:

$ echo Gur chapuyvar bs gur wbxr vf ... |
> tr 'N-Z A-M n-z a-m' 'A-M N-Z a-m n-z'
The punchline of the joke is ...

The ––delete option causes tr to delete selected characters:

$ echo If you can read this, you can spot the missing vowels! |
> tr --delete 'aeiou'
If y cn rd ths, y cn spt th mssng vwls!

In the following example, tr replaces characters and reduces pairs of identical
characters to single characters:

$ echo tennessee | tr -s 'tnse' 'srne'
serene

The next example replaces each sequence of nonalphabetic characters (the comple-
ment of all the alphabetic characters as specified by the character class alpha) in the
file draft1 with a single NEWLINE character. The output is a list of words, one per line.

$ tr -c -s '[:alpha:]' '\n' < draft1

The next example uses character classes to upshift the string hi there:

$ echo hi there | tr '[:lower:]' '[:upper:]'
HI THERE

	000.frontmatter.pdf
	05.bash1
	06.vim
	08.bash2
	12.gawk
	14.xpart5
	99.cmdref

