
116 Chapter 5 The Shell

under the one you entered. The cat utility is working. Because the shell associates
cat’s standard input with the keyboard and cat’s standard output with the screen,
when you type a line of text cat copies the text from standard input (the keyboard)
to standard output (the screen). This exchange is shown in Figure 5-5.

CONTROL-D signals
EOF

The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing
CONTROL-D sends an EOF (end of file) signal to cat to indicate that it has reached the
end of standard input and there is no more text for it to copy. The cat utility then
finishes execution and returns control to the shell, which displays a prompt.

Redirection

The term redirection encompasses the various ways you can cause the shell to alter
where standard input of a command comes from and where standard output goes
to. By default the shell associates standard input and standard output of a com-
mand with the keyboard and the screen as mentioned earlier. You can cause the
shell to redirect standard input or standard output of any command by associating
the input or output with a command or file other than the device file representing
the keyboard or the screen. This section demonstrates how to redirect input from
and output to ordinary text files and utilities.

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a com-
mand to the specified file instead of to the screen (Figure 5-6). The format of a
command line that redirects output is

command [arguments] > filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the output to.

$ cat
This is a line of text.
This is a line of text.
Cat keeps copying lines of text
Cat keeps copying lines of text
until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a line.
of a line.
CONTROL-D
$

Figure 5-5 The cat utility copies standard input to standard output

Excerpt From Chapter 5:

The Shell

The Shell 117

Figure 5-7 uses cat to demonstrate output redirection. This figure contrasts with
Figure 5-3 on page 114, where both standard input and standard output are associ-
ated with the keyboard and the screen. The input in Figure 5-7 comes from the key-
board. The redirect output symbol on the command line causes the shell to
associate cat’s standard output with the sample.txt file specified on the command
line.

After giving the command and typing the text shown in Figure 5-7, the sample.txt
file contains the text you entered. You can use cat with an argument of sample.txt to
display this file. The next section shows another way to use cat to display the file.

Figure 5-7 shows that redirecting the output from cat is a handy way to create a file
without using an editor. The drawback is that once you enter a line and press RETURN,
you cannot edit the text. While you are entering a line, the erase and kill keys work
to delete text. This procedure is useful for making short, simple files.

Figure 5-6 Redirecting standard output

Command

Standard
input

S
h

ell Standard
outputS

he
ll

File

Redirecting output can destroy a file I

caution Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and
destroy its contents. For more information, see the “Redirecting output can destroy a file II” cau-
tion on page 120.

$ cat > sample.txt
This text is being entered at the keyboard and
cat is copying it to a file.
Press CONTROL-D to indicate the
end of file.
CONTROL-D
$

Figure 5-7 cat with its output redirected

118 Chapter 5 The Shell

Figure 5-8 shows how to use cat and the redirect output symbol to catenate (join
one after the other—the derivation of the name of the cat utility) several files into
one larger file. The first three commands display the contents of three files:
stationery, tape, and pens. The next command shows cat with three filenames as
arguments. When you call it with more than one filename, cat copies the files, one at
a time, to standard output. In this case standard output is redirected to the file
supply_orders. The final cat command shows that supply_orders contains the con-
tents of all three files.

Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come
from the specified file instead of from the keyboard (Figure 5-9). The format of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a
utility), arguments are optional arguments, and filename is the name of the ordi-
nary file the shell redirects the input from.

Figure 5-10 shows cat with its input redirected from the supply_orders file that was
created in Figure 5-8 and standard output going to the screen. This setup causes cat
to display the sample file on the screen. The system automatically supplies an EOF
(end of file) signal at the end of an ordinary file.

$ cat stationery
2,000 sheets letterhead ordered: 10/7/05
$ cat tape
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
$ cat pens
12 doz. black pens ordered: 10/4/05

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: 10/7/05
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
12 doz. black pens ordered: 10/4/05
$

Figure 5-8 Using cat to catenate files

The Shell 119

Utilities that take
input from a file or

standard input

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of a
class of Linux utilities that function in this manner. Other members of this class of
utilities include lpr, sort, and grep. These utilities first examine the command line that
you use to call them. If you include a filename on the command line, the utility takes
its input from the file you specify. If you do not specify a filename, the utility takes its
input from standard input. It is the utility or program—not the shell or operating
system—that functions in this manner.

noclobber: Avoids Overwriting Files

The shell provides a feature called noclobber that stops you from inadvertently
overwriting an existing file using redirection. When you enable this feature by set-
ting the noclobber variable and then attempt to redirect output to an existing file,
the shell displays an error message and does not execute the command. If the pre-
ceding examples result in one of the following messages, the noclobber feature has
been set. The following examples set noclobber, attempt to redirect the output from
echo into an existing file, and then unset noclobber under bash and tcsh:

bash $ set -o noclobber
$ echo "hi there" > tmp
bash: tmp: Cannot overwrite existing file
$ set +o noclobber
$ echo "hi there" > tmp
$

Figure 5-9 Redirecting standard input

$ cat < supply_orders
2,000 sheets letterhead ordered: 10/7/05
1 box masking tape ordered: 10/14/05
5 boxes filament tape ordered: 10/28/05
12 doz. black pens ordered: 10/4/05

Figure 5-10 cat with its input redirected

Command

Standard
OutputS

h
el

l

Standard
Input

File

S
hell

120 Chapter 5 The Shell

tcsh tcsh $ set noclobber
tcsh $ echo "hi there" > tmp
tmp: File exists.
tcsh $ unset noclobber
tcsh $ echo "hi there" > tmp
$

You can override noclobber by putting a pipe symbol (tcsh uses an exclamation
point) after the symbol you use for redirecting output (>|).

In the following example, the user first creates a file named a by redirecting the out-
put of date to the file. Next the user sets the noclobber variable and tries redirecting
output to a again. The shell returns an error message. Then the user tries the same
thing but using a pipe symbol after the redirect symbol. This time the shell allows
the user to overwrite the file. Finally, the user unsets noclobber (using a plus sign in
place of the hyphen) and verifies that it is no longer set.

$ date > a
$ set -o noclobber
$ date > a
bash: a: Cannot overwrite existing file
$ date >| a
$ set +o noclobber
$ date > a

For more information on using noclobber under tcsh, refer to page 367.

Redirecting output can destroy a file II

caution Depending on which shell you are using and how your environment has been set up, a command
such as the following may give you undesired results:

$ cat orange pear > orange
cat: orange: input file is output file

Although cat displays an error message, the shell goes ahead and destroys the contents of the
existing orange file. The new orange file will have the same contents as pear because the first
action the shell takes when it sees the redirection symbol (>) is to remove the contents of the orig-
inal orange file. If you want to catenate two files into one, use cat to put the two files into a tem-
porary file and then use mv to rename this third file:

$ cat orange pear > temp
$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 48)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output
grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message may take
a moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it may take a while to realize that you destroyed the contents of a .

The Shell 121

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving any existing information intact. This symbol provides a convenient
way of catenating two files into one. The following commands demonstrate the
action of the append output symbol. The second command accomplishes the cate-
nation described in the preceding caution box:

$ cat orange
this is orange
$ cat pear >> orange
$ cat orange
this is orange
this is pear

You first see the contents of the orange file. Next the contents of the pear file is
added to the end of (catenated with) the orange file. The final cat shows the result.

The next example shows how to create a file that contains the date and time (the
output from date), followed by a list of who is logged in (the output from who). The
first line in Figure 5-11 redirects the output from date to the file named whoson.
Then cat displays the file. Next the example appends the output from who to the
whoson file. Finally cat displays the file containing the output of both utilities.

Do not trust noclobber
caution Appending output is simpler than the two-step procedure described in the preceding caution box

but you must be careful to include both greater than signs. If you accidentally use only one and
the noclobber feature is not on, you will overwrite the orange file. Even if you have the noclobber
feature turned on, it is a good idea to keep backup copies of files you are manipulating in these
ways in case you make a mistake.

Although it protects you from making an erroneous redirection, noclobber does not stop you from
overwriting an existing file using cp or mv. These utilities include the –i (interactive) option that
helps protect you from this type of mistake by verifying your intentions when you try to overwrite
a file. For more information, see the “cp can destroy a file” tip on page 46.

$ date > whoson
$ cat whoson
Thu Mar 24 14:31:18 PST 2005
$ who >> whoson
$ cat whoson
Thu Mar 24 14:31:18 PST 2005
root console Mar 24 05:00(:0)
alex pts/4 Mar 24 12:23(:0.0)
alex pts/5 Mar 24 12:33(:0.0)
jenny pts/7 Mar 23 08:45 (bravo.example.com)

Figure 5-11 Redirecting and appending output

164 Chapter 6 The vim Editor

Searching and Substituting

Searching for and replacing a character, a string of text, or a string that is matched
by a regular expression is a key feature of any editor. The vim editor provides simple
commands for searching for a character on the current line. It also provides more
complex commands for searching for and optionally substituting for single and
multiple occurrences of strings or regular expressions anywhere in the Work buffer.

Searching for a Character

Find (f/F) You can search for and move the cursor to the next occurrence of a specified char-
acter on the current line using the f (Find) command. Refer to “Moving the Cursor
to a Specific Character” on page 155.

t/T The next two commands are used in the same manner as the Find command. The t
command places the cursor on the character before the next occurrence of the spec-
ified character. The T command places the cursor on the character after the previ-
ous occurrence of the specified character.

A semicolon (;) repeats the last f, F, t, or T command.

You can combine these search commands with other commands. For example, the
command d2fq deletes the text from the location of the cursor to the second occur-
rence of the letter q on the current line.

Searching for a String

The vim editor can search backward or forward through the Work buffer to find a
string of text or a string that matches a regular expression (see Appendix A). To find
the next occurrence of a string (forward), press the forward slash (/) key, enter the
text you want to find (called the search string), and press RETURN. When you press the
slash key, vim displays a slash on the status line. As you enter the string of text, it is
also displayed on the status line. When you press RETURN, vim searches for the string.
If this search is successful, vim positions the cursor on the first character of the
string. If you use a question mark (?) in place of the forward slash, vim searches for
the previous occurrence of the string. If you need to include a forward slash in a for-
ward search or a question mark in a backward search, you must quote it by preced-
ing it with a backslash (\).

Two distinct ways of quoting characters

tip You use CONTROL-V to quote special characters in text that you are entering into a file (page 159).
This section discusses the use of a backslash (\) to quote special characters in a search string.
The two techniques of quoting characters are not interchangeable.

Excerpt From Chapter 6:

The vim Editor

The vim Editor 165

The N and n keys repeat the last search without any need for you to reenter the
search string. The n key repeats the original search exactly, and the N key repeats
the search in the opposite direction of the original search.

If you are searching forward and vim does not find the search string before it gets to
the end of the Work buffer, the editor typically wraps around and continues the
search at the beginning of the Work buffer. During a backward search, vim wraps
around from the beginning of the Work buffer to the end. Also, vim normally per-
forms case-sensitive searches. Refer to “Wrap scan” (page 180) and “Ignore case in
searches” (page 178) for information about how to change these search parameters.

Normal Versus Incremental Searches

When vim performs a normal search (its default behavior), you enter a slash or ques-
tion mark followed by the search string and press RETURN. The vim editor moves the
cursor to the next or previous occurrence of the string you are searching for.

When vim performs an incremental search, you enter a slash or question mark. As
you enter each character of the search string, vim moves the highlight to the next or
previous occurrence of the string you have entered so far. When the highlight is on
the string you are searching for, you must press RETURN to move the cursor to the
highlighted string. If the string you enter does not match any text, vim does not
highlight anything.

The type of search that vim performs depends on the incsearch parameter
(page 178). Give the command :set incsearch to turn on incremental searching. Use
noincsearch to turn it off. When you set the compatible parameter (page 148), vim
turns off incremental searching.

Special Characters in Search Strings

Because the search string is a regular expression, some characters take on a special
meaning within the search string. The following paragraphs list some of these char-
acters. See also “Extended Regular Expressions” on page 834.

The first two items in the following list (^ and $) always have their special meanings
within a search string unless you quote them by preceding them with a backslash
(\). You can turn off the special meanings within a search string for the rest of the
items in the list by setting the nomagic parameter. See “Allow special characters in
searches” (page 177) for more information.

^ Beginning-of-Line Indicator

When the first character in a search string is a caret (also called a circumflex) it
matches the beginning of a line. For example, the command /^the finds the next line
that begins with the string the.

166 Chapter 6 The vim Editor

$ End-of-Line Indicator

A dollar sign matches the end of a line. For example, the command /!$ finds the
next line that ends with an exclamation point and / $ matches the next line that
ends with a SPACE.

. Any-Character Indicator

A period matches any character, anywhere in the search string. For example, the
command /l..e finds line, followed, like, included, all memory, or any other word or
character string that contains an l followed by any two characters and an e. To
search for a period, use a backslash to quote the period (\.).

\> End-of-Word Indicator

This pair of characters matches the end of a word. For example, the command /s\>
finds the next word that ends with an s. Whereas a backslash (\) is typically used to
turn off the special meaning of a character, the character sequence \> has a special
meaning, while > alone does not.

\< Beginning-of-Word Indicator

This pair of characters matches the beginning of a word. For example, the com-
mand /\<The finds the next word that begins with the string The. The beginning-
of-word indicator uses the backslash in the same, atypical way as the end-of-word
indicator.

* Zero or More Occurrences

This character is a modifier that will match zero or more occurrences of the charac-
ter immediately preceding it. For example, the command /dis*m will match the
string di followed by zero or more s characters followed by an m. Examples of suc-
cessful matches are dim or dism or dissm.

[] Character-Class Definition

Brackets surrounding two or more characters match any single character located
between the brackets. For example, the command /dis[ck] finds the next occurrence
of either disk or disc.

There are two special characters you can use within a character-class definition. A
caret (^) as the first character following the left bracket defines the character class
to be any except the following characters. A hyphen between two characters indi-
cates a range of characters. Refer to the examples in Table 6-4.

Substituting One String for Another

A Substitute command combines the effects of a Search command and a Change
command. That is, it searches for a string (regular expression) just as the / com-
mand does, allowing the same special characters discussed in the previous section.
When it finds the string or matches the regular expression, the Substitute command

The vim Editor 167

changes the string or regular expression it matches. The syntax of the Substitute
command is

:[g][address]s/search-string/replacement-string[/option]

As with all commands that begin with a colon, vim executes a Substitute command
from the status line.

The Substitute Address

If you do not specify an address, Substitute searches only the current line. If you use
a single line number as the address, Substitute searches that line. If the address is
two line numbers separated by a comma, Substitute searches those lines and the
lines between them. Refer to “Line numbers” on page 178 if you want vim to dis-
play line numbers. Wherever a line number is allowed in the address, you may also
use an address-string enclosed between slashes. The vim editor operates on the next

Table 6-4 Search examples

Search string What it finds

/and Finds the next occurrence of the string and

Examples: sand and standard slander andiron

/ \<and\> Finds the next occurrence of the word and

Example: and

/^The Finds the next line that starts with The

Examples:

The . . .

There . . .

/^[0-9][0-9]) Finds the next line that starts with a two-digit number followed by a right
parenthesis

Examples:

77)...

01)...

15)...

/ \<[adr] Finds the next word that starts with an a, d, or r

Examples: apple drive road argument right

/^[A-Za-z] Finds the next line that starts with an uppercase or lowercase letter

Examples:

will not find a line starting with the number 7 . . .

Dear Mr. Jones . . .

in the middle of a sentence like this . . .

168 Chapter 6 The vim Editor

line that the address-string matches. When you precede the first slash of the
address-string with the letter g (for global), vim operates on all lines in the file that
the address-string matches. (This g is not the same as the one that goes at the end of
the Substitute command to cause multiple replacements on a single line; see
“Searching for and Replacing Strings” below).

Within the address, a period represents the current line, a dollar sign represents the
last line in the Work buffer, and a percent sign represents the entire Work buffer.
You can perform address arithmetic using plus and minus signs. Table 6-5 shows
some examples of addresses.

Searching for and Replacing Strings

An s comes after the address in the command syntax, indicating that this is a Substi-
tute command. A delimiter follows the s, marking the beginning of the search-
string. Although the examples in this book use a forward slash, you can use as a
delimiter any character that is not a letter, number, blank, or backslash. You must
use the same delimiter at the end of the search-string.

Next comes the search-string. It has the same format as the search string in the /
command and can include the same special characters (page 165). (The search-
string is a regular expression; refer to Appendix A for more information.) Another
delimiter marks the end of the search-string and the beginning of the replace-string.

The replace-string replaces the text matched by the search-string. It should be fol-
lowed by the delimiter character. You can omit the final delimiter when no option
follows the replace-string; a final delimiter is required if an option is present.

Several characters have special meanings in the search-string, and other characters
have special meanings in the replace-string. For example, an ampersand (&) in the
replace-string represents the text that was matched by the search-string. A backslash

Table 6-5 Addresses

Address Portion of Work buffer addressed

5 Line 5

77,100 Lines 77 through 100 inclusive

1,. Beginning of Work buffer through current line

.,$ Current line through end of Work buffer

1,$ Entire Work buffer

% Entire Work buffer

/pine/ The next line containing the word pine

g/pine/ All lines containing the word pine

.,.+10 Current line through tenth following line (11 lines in all)

The vim Editor 169

in the replace-string quotes the character that follows it. Refer to Table 6-6 and
Appendix A.

Table 6-6 Search and replace examples

Command Result

:s/bigger/biggest/ Replaces the first occurrence of the string bigger on the current line
with biggest

Example:

bigger → biggest

:1,.s/Ch 1/Ch 2/g Replaces every occurrence of the string Ch 1, before or on the cur-
rent line, with the string Ch 2

Examples:

Ch 1 → Ch 2

Ch 12 → Ch 22

:1,$s/ten/10/g Replaces every occurrence of the string ten with the string 10

Examples:

ten → 10

often → of10

tenant → 10ant

:g/chapter/s/ten/10/ Replaces the first occurrence of the string ten with the string 10 on
all lines containing the word chapter

Examples:

chapter ten → chapter 10

chapters will often → chapters will of10

:%s/\<ten\>/10/g Replaces every occurrence of the word ten with the string 10

Example:

ten → 10

:.,.+10s/every/each/g Replaces every occurrence of the string every with the string each
on the current line through the tenth following line

Examples:

every → each

everything → eachthing

:s/\<short\>/ "&"/ Replaces the word short on the current line with "short" (enclosed
within quotation marks)

Example:

the shortest of the short → the shortest of the "short"

170 Chapter 6 The vim Editor

Normally, the Substitute command replaces only the first occurrence of any text
that matches the search-string on a line. If you want a global substitution—that is,
if you want to replace all matching occurrences of text on a line—append the g
(global) option after the delimiter that ends the replace-string. Another useful
option, c (check), causes vim to ask whether you would like to make the change
each time it finds text that matches the search-string. Pressing y replaces the
search-string, q terminates the command, l (last) makes the replacement and quits,
a (all) makes all remaining replacements, and n continues the search without mak-
ing that replacement.

The address-string need not be the same as the search-string. For example,

:/candle/s/wick/flame/

substitutes flame for the first occurrence of wick on the next line that contains the
string candle. Similarly,

:g/candle/s/wick/flame/

performs the same substitution for the first occurrence of wick on each line of the
file containing the string candle and

:g/candle/s/wick/flame/g

performs the same substitution for all occurrences of wick on each line that con-
tains the string candle.

If the search-string is the same as the address, you can leave the search-string
blank. For example, the command :/candle/s//lamp/ is equivalent to the command
:/candle/s/candle/lamp/.

Miscellaneous Commands

This section describes three commands that do not fit naturally into any other groups.

Join

Join (J) The J (Join) command joins the line below the current line to the end of the current
line, inserting a SPACE between what was previously two lines and leaving the cursor
on this SPACE. If the current line ends with a period, vim inserts two SPACEs.

You can always “unjoin” (break) a line into two lines by replacing the SPACE or SPACEs
where you want to break the line with a RETURN.

278 Chapter 8 The Bourne Again Shell

Keyword variables Keyword shell variables (or simply keyword variables) have special meaning to the
shell and usually have short, mnemonic names. When you start a shell (by logging
in, for example), the shell inherits several keyword variables from the environment.
Among these variables are HOME, which identifies your home directory, and
PATH, which determines which directories the shell searches and in what order to
locate commands that you give the shell. The shell creates and initializes (with
default values) other keyword variables when you start it. Still other variables do
not exist until you set them.

You can change the values of most of the keyword shell variables at any time but it
is usually not necessary to change the values of keyword variables initialized in the
/etc/profile or /etc/csh.cshrc systemwide startup files. If you need to change the
value of a bash keyword variable, do so in one of your startup files (for bash see
page 257; for tcsh see page 342). Just as you can make user-created variables global,
so you can make keyword variables global; this is usually done automatically in the
startup files. You can also make a keyword variable readonly.

Positional
parameters

Special parameters

The names of one group of parameters do not resemble variable names. Most of
these parameters have one-character names (for example, 1, ?, and #) and are refer-
enced (as are all variables) by preceding the name with a dollar sign ($1, $?, and
$#). The values of these parameters reflect different aspects of your ongoing interac-
tion with the shell.

Whenever you give a command, each argument on the command line becomes the
value of a positional parameter. Positional parameters (page 480) enable you to
access command line arguments, a capability that you will often require when you
write shell scripts. The set builtin (page 484) enables you to assign values to posi-
tional parameters.

Other frequently needed shell script values, such as the name of the last command
executed, the number of command line arguments, and the status of the most
recently executed command, are available as special parameters. You cannot assign
values to special parameters.

User-Created Variables

The first line in the following example declares the variable named person and ini-
tializes it with the value alex (use set person = alex in tcsh):

$ person=alex
$ echo person
person
$ echo $person
alex

Because the echo builtin copies its arguments to standard output, you can use it to
display the values of variables. The second line of the preceding example shows that

Excerpt From Chapter 8:

The Bourne Again Shell

The Bourne Again Shell 279

person does not represent alex. Instead, the string person is echoed as person. The
shell substitutes the value of a variable only when you precede the name of the vari-
able with a dollar sign ($). The command echo $person displays the value of the
variable person; it does not display $person because the shell does not pass $person
to echo as an argument. Because of the leading $, the shell recognizes that $person
is the name of a variable, substitutes the value of the variable, and passes that value
to echo. The echo builtin displays the value of the variable—not its name—never
knowing that you called it with a variable.

Quoting the $ You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
alex
$ echo "$person"
alex
$ echo '$person'
$person
$ echo \$person
$person

SPACEs Because they do not prevent variable substitution but do turn off the special mean-
ings of most other characters, double quotation marks are useful when you assign
values to variables and when you use those values. To assign a value that contains
SPACEs or TABs to a variable, use double quotation marks around the value. Although
double quotation marks are not required in all cases, using them is a good habit.

$ person="alex and jenny"
$ echo $person
alex and jenny

$ person=alex and jenny
bash: and: command not found

When you reference a variable that contains TABs or multiple adjacent SPACEs, you
need to use quotation marks to preserve the spacing. If you do not quote the vari-
able, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="alex and jenny"
$ echo $person
alex and jenny
$ echo "$person"
alex and jenny

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such
as * or ?, the shell may expand that variable.

280 Chapter 8 The Bourne Again Shell

Pathname
expansion in
assignments

The first line in the following sequence of commands assigns the string alex* to the
variable memo. The Bourne Again Shell does not expand the string because bash
does not perform pathname expansion (page 127) when assigning a value to a vari-
able. All shells process a command line in a specific order. Within this order bash
(but not tcsh) expands variables before it interprets commands. In the following
echo command line, the double quotation marks quote the asterisk (*) in the
expanded value of $memo and prevent bash from performing pathname expansion
on the expanded memo variable before passing its value to the echo command:

$ memo=alex*
$ echo "$memo"
alex*

All shells interpret special characters as special when you reference a variable that
contains an unquoted special character. In the following example, the shell expands
the value of the memo variable because it is not quoted:

$ ls
alex.report
alex.summary
$ echo $memo
alex.report alex.summary

Here the shell expands $memo to alex*, expands alex* to alex.report and
alex.summary, and passes these two values to echo.

optional
Braces The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE},

in which the variable name is enclosed by ${}. The braces insulate the variable
name. Braces are necessary when catenating a variable value with a string:

$ PREF=counter
$ WAY=$PREFclockwise
$ FAKE=$PREFfeit
$ echo $WAY $FAKE

$

The preceding example does not work as planned. Only a blank line is output
because, although the symbols PREFclockwise and PREFfeit are valid variable
names, they are not set. By default the shell evaluates an unset variable as an empty
(null) string and displays this value (bash) or generates an error message (tcsh). To
achieve the intent of these statements, refer to the PREF variable using braces:

$ PREF=counter
$ WAY=${PREF}clockwise
$ FAKE=${PREF}feit
$ echo $WAY $FAKE
counterclockwise counterfeit

The Bourne Again Shell 281

The Bourne Again Shell refers to the arguments on its command line by position,
using the special variables $1, $2, $3, and so forth up to $9. If you wish to refer to
arguments past the ninth argument, you must use braces: ${10}. The name of the
command is held in $0 (page 481).

unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, set the value to
null (use set person = in tcsh):

$ person=
$ echo $person

$

You can remove a variable with the unset builtin. To remove the variable person,
give the following command:

$ unset person

Variable Attributes

This section discusses attributes and explains how to assign them to variables.

readonly: Makes the Value of a Variable Permanent

You can use the readonly builtin (not in tcsh) to ensure that the value of a variable
cannot be changed. The next example declares the variable person to be readonly.
You must assign a value to a variable before you declare it to be readonly; you can-
not change its value after the declaration. When you attempt to unset or change the
value of a readonly variable, the shell displays an error message:

$ person=jenny
$ echo $person
jenny
$ readonly person
$ person=helen
bash: person: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly
shell variables. This list includes keyword variables that are automatically set as
readonly as well as keyword or user-created variables that you have declared as
readonly. See “Listing variable attributes” on page 282 for an example (readonly
and declare –r produce the same output).

534 Chapter 12 The gawk Pattern Processing Language

Associative Arrays

An associative array is one of gawk’s most powerful features. These arrays use
strings as indexes. Using an associative array, you can mimic a traditional array by
using numeric strings as indexes.

You assign a value to an element of an associative array just as you would assign a
value to any other gawk variable. The syntax is

array[string] = value

where array is the name of the array, string is the index of the element of the array
you are assigning a value to, and value is the value you are assigning to that element.

You can use a special for structure with an associative array. The syntax is

for (elem in array) action

where elem is a variable that takes on the value of each element of the array as the
for structure loops through them, array is the name of the array, and action is the
action that gawk takes for each element in the array. You can use the elem variable
in this action.

The “Examples” section found later in this chapter contains programs that use
associative arrays.

printf
You can use the printf command in place of print to control the format of the out-
put that gawk generates. The gawk version of printf is similar to that found in the C
language. A printf command has the following syntax:

printf "control-string", arg1, arg2, ..., argn

The control-string determines how printf formats arg1, arg2, ..., argn. These argu-
ments can be variables or other expressions. Within the control-string you can use
\n to indicate a NEWLINE and \t to indicate a TAB. The control-string contains conver-
sion specifications, one for each argument. A conversion specification has the fol-
lowing syntax:

%[–][x[.y]]conv

where – causes printf to left-justify the argument; x is the minimum field width, and .y
is the number of places to the right of a decimal point in a number. The conv indicates
the type of numeric conversion and can be selected from the letters in Table 12-5. Refer
to “Examples” later in this chapter for examples of how to use printf.

Table 12-5 Numeric conversion

conv Type of conversion

d Decimal

e Exponential notation

Excerpt From Chapter 12:

The gawk Pattern Processing Language

The gawk Patter Processing Language 535

Control Structures

Control (flow) statements alter the order of execution of commands within a gawk
program. This section details the if...else, while, and for control structures. In addi-
tion, the break and continue statements work in conjunction with the control struc-
tures to alter the order of execution of commands. See page 436 for more
information on control structures. You do not need to use braces around com-
mands when you specify a single, simple command.

if...else

The if...else control structure tests the status returned by the condition and transfers
control based on this status. The syntax of an if...else structure is shown below. The
else part is optional.

if (condition)
{commands}

[else
{commands}]

The simple if statement shown here does not use braces:

if ($5 <= 5000) print $0

Next is a gawk program that uses a simple if...else structure. Again, there are no
braces.

$ cat if1
BEGIN {

nam="sam"
if (nam == "max")

print "nam is max"
else

print "nam is not max, it is", nam
}

$ gawk -f if1
nam is not max, it is sam

f Floating-point number

g Use f or e, whichever is shorter

o Unsigned octal

s String of characters

x Unsigned hexadecimal

Table 12-5 Numeric conversion (continued)

536 Chapter 12 The gawk Pattern Processing Language

while

The while structure loops through and executes the commands as long as the condi-
tion is true. The syntax of a while structure is

while (condition)
{commands}

The next gawk program uses a simple while structure to display powers of 2. This
example uses braces because the while loop contains more than one statement.

$ cat while1
BEGIN{

n = 1
while (n <= 5)

{
print n "^2", 2**n
n++
}

}

$ gawk -f while1
1^2 2
2^2 4
3^2 8
4^2 16
5^2 32

for
The syntax of a for control structure is

for (init; condition; increment)
{commands}

A for structure starts by executing the init statement, which usually sets a counter
to 0 or 1. It then loops through the commands as long as the condition is true. After
each loop it executes the increment statement. The for1 gawk program does the
same thing as the preceding while1 program except that it uses a for statement,
which makes the program simpler:

$ cat for1
BEGIN {
 for (n=1; n <= 5; n++)
 print n "^2", 2**n
 }

$ gawk -f for1
1^2 2
2^2 4
3^2 8
4^2 16
5^2 32

Examples 537

The gawk utility supports an alternative for syntax for working with associative arrays:

for (var in array)
{commands}

This for structure loops through elements of the associative array named array,
assigning the value of the index of each element of array to var each time through
the loop.

END {for (name in manuf) print name, manuf[name]}

break

The break statement transfers control out of a for or while loop, terminating execu-
tion of the innermost loop it appears in.

continue

The continue statement transfers control to the end of a for or while loop, causing
execution of the innermost loop it appears in to continue with the next iteration.

Examples

cars data file Many of the examples in this section work with the cars data file. From left to right
the columns in the file contain each car’s make, model, year of manufacture, mile-
age in thousands of miles, and price. All whitespace in this file is composed of single
TABs (the file does not contain any SPACEs).

$ cat cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
ford taurus 2004 10 17000
toyota rav4 2002 180 750
chevy impala 1985 85 1550
ford explor 2003 25 9500

Missing pattern A simple gawk program is

{ print }

This program consists of one program line that is an action. Because the pattern is
missing, gawk selects all lines of input. When used without any arguments the print

538 Chapter 12 The gawk Pattern Processing Language

command displays each selected line in its entirety. This program copies the input to
standard output.

$ gawk '{ print }' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

Missing action The next program has a pattern but no explicit action. The slashes indicate that
chevy is a regular expression.

/chevy/

In this case gawk selects from the input all lines that contain the string chevy. When
you do not specify an action, gawk assumes that the action is print. The following
example copies to standard output all lines from the input that contain the string
chevy:

$ gawk '/chevy/' cars
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
chevy impala 1985 85 1550

Single quotation
marks

Although neither gawk nor shell syntax requires single quotation marks on the com-
mand line, it is still a good idea to use them because they can prevent problems. If
the gawk program you create on the command line includes SPACEs or special shell
characters, you must quote them. Always enclosing the program in single quotation
marks is the easiest way of making sure that you have quoted any characters that
need to be quoted.

Fields The next example selects all lines from the file (it has no pattern). The braces
enclose the action; you must always use braces to delimit the action so that gawk
can distinguish it from the pattern. This example displays the third field ($3), a SPACE

(the output field separator, indicated by the comma), and the first field ($1) of each
selected line:

$ gawk '{print $3, $1}' cars
1970 plym
1999 chevy
1965 ford
1998 volvo
...

The next example, which includes both a pattern and an action, selects all lines that
contain the string chevy and displays the third and first fields from the lines it
selects:

$ gawk '/chevy/ {print $3, $1}' cars
1999 chevy
2000 chevy
1985 chevy

Examples 539

Next gawk selects lines that contain a match for the regular expression h. Because
there is no explicit action, gawk displays all the lines it selects:

$ gawk '/h/' cars
chevy malibu 1999 60 3000
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
honda accord 2001 30 6000
chevy impala 1985 85 1550

~ (matches
operator)

The next pattern uses the matches operator (~) to select all lines that contain the let-
ter h in the first field:

$ gawk '$1 ~ /h/' cars
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
honda accord 2001 30 6000
chevy impala 1985 85 1550

The caret (^) in a regular expression forces a match at the beginning of the line
(page 830) or, in this case, the beginning of the first field:

$ gawk '$1 ~ /^h/' cars
honda accord 2001 30 6000

Brackets surround a character-class definition (page 829). In the next example,
gawk selects lines that have a second field that begins with t or m and displays the
third and second fields, a dollar sign, and the fifth field. Because there is no comma
between the "$" and the $5, gawk does not put a SPACE between them in the output.

$ gawk '$2 ~ /^[tm]/ {print $3, $2, "$" $5}' cars
1999 malibu $3000
1965 mustang $10000
2003 thundbd $10500
2000 malibu $3500
2004 taurus $17000

Dollar signs The next example shows three roles a dollar sign can play in a gawk program. A
dollar sign followed by a number names a field. Within a regular expression a dollar
sign forces a match at the end of a line or field (5$). Within a string a dollar sign
represents itself.

$ gawk '$3 ~ /5$/ {print $3, $1, "$" $5}' cars
1965 ford $10000
1985 bmw $450
1985 chevy $1550

In the next example, the equal-to relational operator (==) causes gawk to perform a
numeric comparison between the third field in each line and the number 1985. The
gawk command takes the default action, print, on each line where the comparison
is true.

540 Chapter 12 The gawk Pattern Processing Language

$ gawk '$3 == 1985' cars
bmw 325i 1985 115 450
chevy impala 1985 85 1550

The next example finds all cars priced at or less than $3,000:

$ gawk '$5 <= 3000' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
bmw 325i 1985 115 450
toyota rav4 2002 180 750
chevy impala 1985 85 1550

Textual
comparisons

When you use double quotation marks, gawk performs textual comparisons by
using the ASCII (or other local) collating sequence as the basis of the comparison. In
the following example, gawk shows that the strings 450 and 750 fall in the range
that lies between the strings 2000 and 9000, which is probably not the intended
result:

$ gawk '"2000" <= $5 && $5 < "9000"' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
toyota rav4 2002 180 750

When you need to perform a numeric comparison, do not use quotation marks. The
next example gives the intended result. It is the same as the previous example except
that it omits the double quotation marks.

$ gawk '2000 <= $5 && $5 < 9000' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
honda accord 2001 30 6000

, (range operator) The range operator (,) selects a group of lines. The first line it selects is the one
specified by the pattern before the comma. The last line is the one selected by the
pattern after the comma. If no line matches the pattern after the comma, gawk
selects every line through the end of the input. The next example selects all lines,
starting with the line that contains volvo and concluding with the line that contains
bmw:

$ gawk '/volvo/ , /bmw/' cars
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
bmw 325i 1985 115 450

After the range operator finds its first group of lines, it begins the process again,
looking for a line that matches the pattern before the comma. In the following
example, gawk finds three groups of lines that fall between chevy and ford.

Examples 541

Although the fifth line of input contains ford, gawk does not select it because at the
time it is processing the fifth line, it is searching for chevy.

$ gawk '/chevy/ , /ford/' cars
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
ford taurus 2004 10 17000
chevy impala 1985 85 1550
ford explor 2003 25 9500

––file option When you are writing a longer gawk program, it is convenient to put the program in
a file and reference the file on the command line. Use the –f or ––file option fol-
lowed by the name of the file containing the gawk program.

BEGIN The following gawk program, stored in a file named pr_header, has two actions and
uses the BEGIN pattern. The gawk utility performs the action associated with
BEGIN before processing any lines of the data file: It displays a header. The second
action, {print}, has no pattern part and displays all the lines from the input.

$ cat pr_header
BEGIN {print "Make Model Year Miles Price"}
 {print}

$ gawk -f pr_header cars
Make Model Year Miles Price
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

The next example expands the action associated with the BEGIN pattern. In the
previous and following examples, the whitespace in the headers is composed of sin-
gle TABs, so that the titles line up with the columns of data.

$ cat pr_header2
BEGIN {
print "Make Model Year Miles Price"
print "--"
}
 {print}

$ gawk -f pr_header2 cars
Make Model Year Miles Price
--
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

Advanced gawk Programming 557

$ gawk -f g5 < alpha
line # 1 aaaaaaaaa
>>>> finished processing line # 1

line # 2 bbbbbbbbb
skip this line: ccccccccc
previous line began with: bbbbbbbbb
>>>> finished processing line # 3

line # 4 ddddddddd
>>>> finished processing line # 4

Coprocess: Two-Way I/O

A coprocess is a process that runs in parallel with another process. Starting with
version 3.1, gawk can invoke a coprocess to exchange information directly with a
background process. A coprocess can be useful when you are working in a cli-
ent/server environment, setting up an SQL (page 902) front end/back end, or
exchanging data with a remote system over a network. The gawk syntax identifies a
coprocess by preceding the name of the program that starts the background process
with a |& operator.

The coprocess command must be a filter (i.e., it reads from standard input and
writes to standard output) and must flush its output whenever it has a complete line
rather than accumulating lines for subsequent output. When a command is invoked
as a coprocess, it is connected via a two-way pipe to a gawk program so that you
can read from and write to the coprocess.

to_upper When used alone the tr utility (page 804) does not flush its output after each line.
The to_upper shell script is a wrapper for tr that does flush its output; this filter can
be run as a coprocess. For each line read, to_upper writes the line, translated to
uppercase, to standard output. Remove the # before set –x if you want to_upper to
display debugging output.

$ cat to_upper
#!/bin/bash
#set -x
while read arg
do

echo "$arg" | tr '[a-z]' '[A-Z]'
done

$ echo abcdef | to_upper
ABCDEF

The g6 program invokes to_upper as a coprocess. This gawk program reads stan-
dard input or a file specified on the command line, translates the input to uppercase,
and writes the translated data to standard output.

558 Chapter 12 The gawk Pattern Processing Language

$ cat g6
{
print $0 |& "to_upper"
"to_upper" |& getline hold
print hold
}

$ gawk -f g6 < alpha
AAAAAAAAA
BBBBBBBBB
CCCCCCCCC
DDDDDDDDD

The g6 program has one compound statement, enclosed within braces, comprising
three statements. Because there is no pattern, gawk executes the compound state-
ment once for each line of input.

In the first statement, print $0 sends the current record to standard output. The |&
operator redirects standard output to the program named to_upper, which is run-
ning as a coprocess. The quotation marks around the name of the program are
required. The second statement redirects standard output from to_upper to a getline
statement, which copies its standard input to the variable named hold. The third
statement, print hold, sends the contents of the hold variable to standard output.

Getting Input from a Network

Building on the concept of a coprocess, gawk can exchange information with a pro-
cess on another system via an IP network connection. When you specify one of the
special filenames that begins with /inet/, gawk processes your request using a net-
work connection. The format of these special filenames is

/inet/protocol/local-port/remote-host/remote-port

where protocol is usually tcp but can be udp, local-port is 0 (zero) if you want gawk
to pick a port (otherwise it is the number of the port you want to use), remote-host
is the IP address (page 882) or fully qualified domain name (page 876) of the
remote host, and remote-port is the port number on the remote host. Instead of a
port number in local-port and remote-port, you can specify a service name such as
http or ftp.

The g7 program reads the cars file from the server at www.sobell.com; the author
has set up this file for you to experiment with. On www.sobell.com the file is
located at /CMDREF1/code/chapter_12/cars. The first statement in g7 assigns the
special filename to the server variable. The filename specifies a TCP connection,
allows the local system to select an appropriate port, and connects to
www.sobell.com on port 80. You can use http in place of 80 to specify the standard
HTTP port.

Error Messages 559

The second statement uses a coprocess to send a GET request to the remote server.
This request includes the pathname of the file gawk is requesting. A while loop uses
a coprocess to redirect lines from the server to getline. Because getline has no vari-
able name as an argument, it saves its input in the current record buffer $0. The
final print statement sends each record to standard output. Experiment with this
script, replacing the final print statement with gawk statements that process the file.

$ cat g7
BEGIN {

set variable named server
to special networking filename
server = "/inet/tcp/0/www.sobell.com/80"

use coprocess to send GET request to remote server
print "GET /CMDREF1/code/chapter_12/cars" |& server

while loop uses coprocess to redirect
output from server to getline
while (server |& getline)

print $0
}

$ gawk -f g7
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

Error Messages

The following examples show some of the more common causes of gawk error mes-
sages (and nonmessages). These examples are run under bash. When you use gawk
with tcsh, the error messages from the shell will be different.

The first example leaves the single quotation marks off the command line, so the
shell interprets $3 and $1 as shell variables. Also, because there are no single quota-
tion marks, the shell passes gawk four arguments instead of two.

$ gawk {print $3, $1} cars
gawk: cmd. line:2: (END OF FILE)
gawk: cmd. line:2: syntax error

The next command line includes a typo (prinnt) that gawk does not catch. Instead of
issuing an error message, gawk simply does not do anything useful.

$ gawk '$3 >= 83 {prinnt $1}' cars

596 bzip2

bzip2

bzip2
Compresses or decompresses files

bzip2 [options] [file-list]
bunzip2 [options] [file-list]
bzcat [options] [file-list]
bzip2recover [file]

The bzip2 utility compresses files; bunzip2 restores files compressed with bzip2; bzcat displays files
compressed with bzip2.

Arguments The file-list is a list of one or more files (no directories) that are to be compressed or
decompressed. If file-list is empty or if the special option – is present, bzip2 reads
from standard input. The ––stdout option causes bzip2 to write to standard output.

Options Accepts the common options described on page 587.

––stdout –c Writes the results of compression or decompression to standard output.

––decompress –d Decompresses a file compressed with bzip2. This option with bzip2 is equiva-
lent to the bunzip2 command.

––fast or
––best

–n Sets the block size when compressing a file. The n is a digit from 1 to 9, where
1 (––fast) generates a block size of 100 kilobytes and 9 (––best) generates a
block size of 900 kilobytes. The default level is 9. The options ––fast and
––best are provided for compatibility with gzip and do not necessarily yield the
fastest or best compression.

––force –f Forces compression even if a file already exists, has multiple links, or comes
directly from a terminal. The option has a similar effect with bunzip2.

––keep –k Does not delete input files while compressing or decompressing them.

––quiet –q Suppresses warning messages; does display critical messages.

––test –t Verifies the integrity of a compressed file. Displays nothing if the file is OK.

––verbose –v For each file being compressed displays the name of the file, the compression
ratio, the percentage of space saved, and the sizes of the decompressed and
compressed files.

Discussion The bzip2 and bunzip2 utilities work similarly to gzip and gunzip; see the discussion
of gzip (page 689) for more information. Normally bzip2 does not overwrite a file;
you must use ––force to overwrite a file during compression or decompression.

Excerpt From Part V:

Command Reference

bzip2 597

Notes The bzip2 home page is sources.redhat.com/bzip2.

The bzip2 utility does a better job of compressing files than gzip.

Use the ––bzip2 modifier with tar (page 788) to compress archive files with bzip2.

bzcat file-list Works like cat except that it uses bunzip2 to decompress file-list as it copies files to
standard output.

bzip2recover Attempts to recover a damaged file that was compressed with bzip2.

Examples In the following example, bzip2 compresses a file and gives the resulting file the
same name with a .bz2 filename extension. The –v option displays statistics about
the compression.

$ ls -l
total 728
-rw-r--r-- 1 sam sam 737414 Feb 20 19:05 bigfile
$ bzip2 -v bigfile
 bigfile: 3.926:1, 2.037 bits/byte, 74.53% saved, 737414 in, 187806 out
$ ls -l
total 188
-rw-r--r-- 1 sam sam 187806 Feb 20 19:05 bigfile.bz2

Next touch creates a file with the same name as the original file; bunzip2 refuses to
overwrite the file in the process of decompressing bigfile.bz2. The ––force option
enables bunzip2 to overwrite the file.

$ touch bigfile
$ bunzip2 bigfile.bz2
bunzip2: Output file bigfile already exists.
$ bunzip2 --force bigfile.bz2
$ ls -l
total 728
-rw-r--r-- 1 sam sam 737414 Feb 20 19:05 bigfile

616 cp

cp

cp
Copies files

cp [options] source-file destination-file
cp [options] source-file-list destination-directory

The cp utility copies one or more files. It can either make a copy of a single file (first format) or it can
copy one or more files to a directory (second format). With the ––recursive option, cp can copy
directories.

Arguments The source-file is the pathname of the file that cp makes a copy of. The destination-
file is the pathname that cp assigns to the resulting copy of the file.

The source-file-list is a list of one or more pathnames of files that cp makes copies
of. The destination-directory is the pathname of the directory in which cp places
the copied files. With this format, cp gives each of the copied files the same simple
filename as its source-file.

The ––recursive option enables cp to copy directories recursively from the source-
file-list into the destination-directory.

Options Accepts the common options described on page 587.

––archive –a Attempts to preserve as many attributes of source-file as possible. Same as
–dpPR.

––backup –b If copying a file would remove or overwrite an existing file, this option makes
a backup copy of the file that would be overwritten. The backup copy has the
same name as the destination-file with a tilde (~) appended to it. When you
use both ––backup and ––force, cp makes a backup copy when you try to copy
a file over itself.

–d Copies symbolic links, not the files that links point to. Also preserves hard
links in destination-files that exist between corresponding source-files. This
option is equivalent to ––no-dereference and ––preserve=links.

––force –f When the destination-file exists and cannot be opened for writing, this option
causes cp to try to remove destination-file before copying source-file. This
option is useful when the user copying a file does not have write permission to
an existing destination-file but has write permission to the directory contain-
ing the destination-file. See also ––backup.

––interactive –i Prompts you whenever cp would overwrite a file. If you respond with a string
that starts with y or Y, cp continues. If you enter anything else, cp does not
copy the file.

cp 617

––dereference –L Copies the file that a symbolic link points to. See ––no-dereference.

––preserve –p Creates a destination-file with the same owner, group, permissions, access
date, and modification date as the source-file.

––no-dereference –P Copies symbolic links, not the files that the links point to. Without the –R,
–r, or ––recursive option, the default behavior is to dereference links (copy
the files that links point to, not the links). With one of these options, cp does
not dereference symbolic links (it copies the links, not the files that the links
point to).

––parents Copies a relative pathname to a directory, creating directories as needed. (See
“Examples.”)

––preserve=links When recursively copying directories, attempts to preserve hard links in
destination-files that exist between corresponding source-files.

––recursive –R or –r
Recursively copies directory hierarchies including ordinary files. The ––no-
dereference option is implied.

––update –u Copies only when the destination-file does not exist or when it is older than
the source-file.

––verbose –v Displays the name of each file as cp copies it.

Notes If the destination-file exists before you execute cp, cp overwrites the file, destroying
the contents but leaving the access privileges, owner, and group associated with the
file as they were.

If the destination-file does not exist, cp uses the access privileges of the source-file.
The user who copies the file becomes the owner of the destination-file and the
user’s group becomes the group associated with the destination-file.

With the –p option, cp attempts to set the owner, group, permissions, access date,
and modification date to match those of the source-file.

Unlike ln (page 702), the destination-file that cp creates is independent of its
source-file.

Examples The first command makes a copy of the file letter in the working directory. The
name of the copy is letter.sav.

$ cp letter letter.sav

The next command copies all files with filenames ending in .c into the archives
directory, which is a subdirectory of the working directory. Each copied file retains
its simple filename but has a new absolute pathname. Because of the ––preserve

618 cp

option, the copied files in archives have the same owner, group, permissions, access
date, and modification date as the source files.

$ cp --preserve *.c archives

The next example copies memo from /home/jenny to the working directory:

$ cp /home/jenny/memo .

The next example uses the ––parents option to copy the file memo/thursday/max to
the dir directory as dir/memo/thursday/max. The find utility shows the newly cre-
ated directory hierarchy.

$ cp --parents memo/thursday/max dir
$ find dir
dir
dir/memo
dir/memo/thursday
dir/memo/thursday/max

The following command copies the files named memo and letter into another direc-
tory. The copies have the same simple filenames as the source files (memo and letter)
but have different absolute pathnames. The absolute pathnames of the copied files
are /home/jenny/memo and /home/jenny/letter.

$ cp memo letter /home/jenny

The final command demonstrates one use of the ––force option. Alex owns the
working directory and tries unsuccessfully to copy one onto a file (me) that he does
not have write permission for. Because he has write permission to the directory that
holds me, Alex can remove the file but not write to it. The ––force option unlinks,
or removes, me and then copies one to the new file named me.

$ ls -ld
drwxrwxr-x 2 alex alex 4096 Oct 21 22:55 .
$ ls -l
-rw-r--r-- 1 root root 3555 Oct 21 22:54 me
-rw-rw-r-- 1 alex alex 1222 Oct 21 22:55 one
$ cp one me
cp: cannot create regular file 'me': Permission denied
$ cp --force one me
$ ls -l
-rw-r--r-- 1 alex alex 1222 Oct 21 22:58 me
-rw-rw-r-- 1 alex alex 1222 Oct 21 22:55 one

If Alex had used the ––backup option in addition to ––force, cp would have created
a backup of me named me~. Refer to “Directory Access Permissions” on page 94
for more information.

cut 627

cu
t

cut
Selects characters or fields from input lines

cut [options] [file-list]

The cut utility selects characters or fields from lines of input and writes them to standard output.
Character and field numbering start with 1.

Arguments The file-list is a list of ordinary files. If you do not specify an argument or if you
specify a hyphen (–) in place of a filename, cut reads from standard input.

Options Accepts the common options described on page 587.

––characters=clist
–c clist

Selects the characters given by the column numbers in clist. The value of clist is
one or more comma-separated column numbers or column ranges. A range is
specified by two column numbers separated by a hyphen. A range of –n means
columns 1 through n; n– means columns n through the end of the line.

––delimiter=dchar
–d dchar

Specifies dchar as the input field delimiter. Also specifies dchar as the output
field delimiter unless you use the ––output-delimiter option. The default delim-
iter is a TAB character. Quote characters as necessary to protect them from shell
expansion.

––fields=flist –f flist
Selects the fields specified in flist. The value of flist is one or more comma-
separated field numbers or field ranges. A range is specified by two field num-
bers separated by a hyphen. A range of –n means fields 1 through n; n– means
fields n through the last field. The field delimiter is a TAB character unless you
use the ––delimiter option to change it.

––output-delimiter=ochar
Specifies ochar as the output field delimiter. The default delimiter is the TAB

character. You can specify a different delimiter by using the ––delimiter option.
Quote characters as necessary to protect them from shell expansion.

Notes Although limited in functionality, cut is easy to learn and use and is a good choice
when columns and fields can be selected without using pattern matching. Some-
times cut is used with paste (page 742).

628 cut

Examples For the next two examples, assume that an ls –l command produces the following
output:

$ ls -l
total 2944
-rwxr-xr-x 1 zach pubs 259 Feb 1 00:12 countout
-rw-rw-r-- 1 zach pubs 9453 Feb 4 23:17 headers
-rw-rw-r-- 1 zach pubs 1474828 Jan 14 14:15 memo
-rw-rw-r-- 1 zach pubs 1474828 Jan 14 14:33 memos_save
-rw-rw-r-- 1 zach pubs 7134 Feb 4 23:18 tmp1
-rw-rw-r-- 1 zach pubs 4770 Feb 4 23:26 tmp2
-rw-rw-r-- 1 zach pubs 13580 Nov 7 08:01 typescript

The following command outputs the permissions of the files in the working direc-
tory. The cut utility with the –c option selects characters 2 through 10 from each
input line. The characters in this range are written to standard output.

$ ls -l | cut -c2-10
otal 2944
rwxr-xr-x
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--

The next command outputs the size and name of each file in the working directory.
This time the –f option selects the fifth and ninth fields from the input lines. The –d
option tells cut to use SPACEs, not TABs, as delimiters. The tr utility (page 804) with the
–s option changes sequences of more than one SPACE character into a single SPACE; oth-
erwise, cut counts the extra SPACE characters as separate fields.

$ ls -l | tr -s ' ' ' ' | cut -f5,9 -d' '

259 countout
9453 headers
1474828 memo
1474828 memos_save
7134 tmp1
4770 tmp2
13580 typescript

The last example displays a list of full names as stored in the fifth field of the
/etc/passwd file. The –d option specifies that the colon character be used as the field
delimiter.

$ cat /etc/passwd
root:x:0:0:Root:/:/bin/sh
jenny:x:401:50:Jenny Chen:/home/jenny:/bin/zsh
alex:x:402:50:Alex Watson:/home/alex:/bin/bash
scott:x:504:500:Scott Adams:/home/scott:/bin/tcsh
hls:x:505:500:Helen Simpson:/home/hls:/bin/bash

cut 629

$ cut -d: -f5 /etc/passwd
Root
Jenny Chen
Alex Watson
Scott Adams
Helen Simpson

804 tr

tr

tr
Replaces specified characters

tr [options] string1 [string2]

The tr utility reads standard input and, for each input character, maps it to an alternate character,
deletes the character, or leaves the character alone. This utility reads from standard input and writes
to standard output.

Arguments The tr utility is typically used with two arguments, string1 and string2. The posi-
tion of each character in the two strings is important: Each time tr finds a character
from string1 in its input, it replaces that character with the corresponding charac-
ter from string2.

With one argument, string1, and the ––delete option, tr deletes the characters specified
in string1. The option ––squeeze-repeats replaces multiple sequential occurrences of
characters in string1 with single occurrences (for example, abbc becomes abc).

Ranges
A range of characters is similar in function to a character class within a regular
expression (page 829). GNU tr does not support ranges (character classes) enclosed
within brackets. You can specify a range of characters by following the character
that appears earlier in the collating sequence with a hyphen and then the character
that comes later in the collating sequence. For example, 1–6 expands to 123456.
Although the range A–Z expands as you would expect in ASCII, this approach does
not work when you use the EBCDIC collating sequence, as these characters are not
sequential in EBCDIC. See “Character Classes” for a solution to this issue.

Character Classes
A tr character class is not the same as described elsewhere in this book. (GNU doc-
umentation uses the term list operator for what this book calls a character class.)
You specify a character class as '[:class:]', where class is a character class from
Table V-28. You must specify a character class in string1 unless you are performing
case conversion (see “Examples” later in this section) or are using the –d and –s
options together.

table V-28 Character classes

Class Meaning

alnum Letters and digits

alpha Letters

tr 805

Options
––complement –c Complements string1, causing tr to match all characters except those in

string1.

––delete –d Deletes characters that match those specified in string1. If you use this option
with the ––squeeze-repeats option, you must specify both string1 and string2
(see “Notes”).

––help Summarizes how to use tr, including the special symbols you can use in string1
and string2.

––squeeze-repeats –s Replaces multiple sequential occurrences of a character in string1 with a single
occurrence of the character when you call tr with only one string argument. If
you use both string1 and string2, the tr utility first translates the characters in
string1 to those in string2 and then reduces multiple sequential occurrences of
characters in string2.

––truncate-set1 –t Truncates string1 so it is the same length as string2 before processing input.

Notes When string1 is longer than string2, the initial portion of string1 (equal in length to
string2) is used in the translation. When string1 is shorter than string2, tr uses the
last character of string1 to extend string1 to the length of string2. In this case tr
departs from the POSIX standard, which does not define a result.

If you use the ––delete and ––squeeze-repeats options at the same time, tr deletes the
characters in string1 and then reduces multiple sequential occurrences of characters
in string2.

blank Whitespace

cntrl CONTROL characters

digit Digits

graph Printable characters but not SPACEs

lower Lowercase letters

print Printable characters including SPACEs

punct Punctuation characters

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

table V-28 Character classes (continued)

806 tr

Examples You can use a hyphen to represent a range of characters in string1 or string2. The
two command lines in the following example produce the same result:

$ echo abcdef | tr 'abcdef' 'xyzabc'
xyzabc
$ echo abcdef | tr 'a-f' 'x-za-c'
xyzabc

The next example demonstrates a popular method for disguising text, often called
ROT13 (rotate 13) because it replaces the first letter of the alphabet with the thir-
teenth, the second with the fourteenth, and so forth.

$ echo The punchline of the joke is ... |
> tr 'A-M N-Z a-m n-z' 'N-Z A-M n-z a-m'
Gur chapuyvar bs gur wbxr vf ...

To make the text intelligible again, reverse the order of the arguments to tr:

$ echo Gur chapuyvar bs gur wbxr vf ... |
> tr 'N-Z A-M n-z a-m' 'A-M N-Z a-m n-z'
The punchline of the joke is ...

The ––delete option causes tr to delete selected characters:

$ echo If you can read this, you can spot the missing vowels! |
> tr --delete 'aeiou'
If y cn rd ths, y cn spt th mssng vwls!

In the following example, tr replaces characters and reduces pairs of identical char-
acters to single characters:

$ echo tennessee | tr -s 'tnse' 'srne'
serene

The next example replaces each sequence of nonalphabetic characters (the comple-
ment of all the alphabetic characters as specified by the character class alpha) in the
file draft1 with a single NEWLINE character. The output is a list of words, one per line.

$ tr --complement --squeeze-repeats '[:alpha:]' '\n' < draft1

The next example uses character classes to upshift the string hi there:

$ echo hi there | tr '[:lower:]' '[:upper:]'
HI THERE

