
Praise for Previous Editions of A Practical

Guide to Linux Commands, Editors, and Shell

Programming

“This book is a very useful tool for anyone who wants to ‘look under the
hood’ so to speak, and really start putting the power of Linux to work.
What I find particularly frustrating about man pages is that they never
include examples. Sobell, on the other hand, outlines very clearly what
the command does and then gives several common, easy-to-understand
examples that make it a breeze to start shell programming on one’s own.
As with Sobell’s other works, this is simple, straight-forward, and easy to
read. It’s a great book and will stay on the shelf at easy arm’s reach for a
long time.”

—Ray Bartlett
Travel Writer

“Overall I found this book to be quite excellent, and it has earned a spot
on the very front of my bookshelf. It covers the real ‘guts’ of Linux— the
command line and its utilities—and does so very well. Its strongest points
are the outstanding use of examples, and the Command Reference sec-
tion. Highly recommended for Linux users of all skill levels. Well done
to Mark Sobell and Prentice Hall for this outstanding book!”

—Dan Clough
Electronics Engineer and
Slackware Linux User

“Totally unlike most Linux books, this book avoids discussing everything
via GUI and jumps right into making the power of the command line
your friend.”

—Bjorn Tipling
Software Engineer
ask.com

“This book is the best distro-agnostic, foundational Linux reference I’ve
ever seen, out of dozens of Linux-related books I’ve read. Finding this
book was a real stroke of luck. If you want to really understand how to
get things done at the command line, where the power and flexibility of
free UNIX-like OSes really live, this book is among the best tools you’ll
find toward that end.”

—Chad Perrin
Writer, TechRepublic

®

“I moved to Linux from Windows XP a couple of years ago, and after
some distro hopping settled on Linux Mint. At age 69 I thought I might
be biting off more than I could chew, but thanks to much reading and the
help of a local LUG I am now quite at home with Linux at the GUI level.

“Now I want to learn more about the CLI and a few months ago bought
your book: A Practical Guide to Linux® Commands, Editors, and Shell
Programming, Second Edition.

“For me, this book is proving to be the foundation upon which my under-
standing of the CLI is being built. As a comparative ‘newbie’ to the Linux
world, I find your book a wonderful, easy-to-follow guide that I highly
recommend to other Linux users.”

—John Nawell
CQLUG (Central Queensland
Linux User Group)

“I have the second edition of A Practical Guide to Linux® Commands,
Editors, and Shell Programming and am a big fan. I used it while working
as a Cisco support engineer. I plan to get the third edition as soon as it is
released. We will be doing a ton of command-line work on literally 1000
boxes (IMS core nodes). I feel you have already given me a lot of tools with
the second edition. I want to get your new book as soon as possible. The
way you write works very well for my style of learning.”

—Robert Lingenfelter
Support Engineer, VoIP/IMS

Praise for Other Books by Mark G. Sobell

“Since I’m in an educational environment, I found the content of Sobell’s
book to be right on target and very helpful for anyone managing Linux
in the enterprise. His style of writing is very clear. He builds up to the
chapter exercises, which I find to be relevant to real-world scenarios a
user or admin would encounter. An IT/IS student would find this book a
valuable complement to their education. The vast amount of information
is extremely well balanced and Sobell manages to present the content
without complicated asides and meandering prose. This is a ‘must have’
for anyone managing Linux systems in a networked environment or any-
one running a Linux server. I would also highly recommend it to an
experienced computer user who is moving to the Linux platform.”

—Mary Norbury
IT Director
Barbara Davis Center
University of Colorado at Denver
from a review posted on slashdot.org

“I had the chance to use your UNIX books when I when was in college
years ago at Cal Poly, San Luis Obispo, CA. I have to say that your books
are among the best! They’re quality books that teach the theoretical
aspects and applications of the operating system.”

—Benton Chan
IS Engineer

“The book has more than lived up to my expectations from the many
reviews I read, even though it targets FC2. I have found something very
rare with your book: It doesn’t read like the standard technical text, it
reads more like a story. It’s a pleasure to read and hard to put down. Did
I say that?! :-)”

—David Hopkins
Business Process Architect

“Thanks for your work and for the book you wrote. There are really few
books that can help people to become more efficient administrators of
different workstations. We hope (in Russia) that you will continue bring-
ing us a new level of understanding of Linux/UNIX systems.”

—Anton Petukhov

“Mark Sobell has written a book as approachable as it is authoritative.”

—Jeffrey Bianchine
Advocate, Author, Journalist

“Excellent reference book, well suited for the sysadmin of a Linux cluster,
or the owner of a PC contemplating installing a recent stable Linux.
Don’t be put off by the daunting heft of the book. Sobell has striven to
be as inclusive as possible, in trying to anticipate your system adminis-
tration needs.”

—Wes Boudville
Inventor

“A Practical Guide to Red Hat® Linux® is a brilliant book. Thank you
Mark Sobell.”

—C. Pozrikidis
University of California at San Diego

“This book presents the best overview of the Linux operating system that
I have found. . . . [It] should be very helpful and understandable no matter
what the reader’s background: traditional UNIX user, new Linux devo-
tee, or even Windows user. Each topic is presented in a clear, complete
fashion and very few assumptions are made about what the reader
knows. . . . The book is extremely useful as a reference, as it contains a
70-page glossary of terms and is very well indexed. It is organized in such
a way that the reader can focus on simple tasks without having to wade
through more advanced topics until they are ready.”

—Cam Marshall
Marshall Information Service LLC
Member of Front Range UNIX
Users Group [FRUUG]
Boulder, Colorado

“Conclusively, this is THE book to get if you are a new Linux user and you
just got into RH/Fedora world. There’s no other book that discusses so
many different topics and in such depth.”

—Eugenia Loli-Queru
Editor in Chief
OSNews.com

“I currently own one of your books, A Practical Guide to Linux®. I believe
this book is one of the most comprehensive and, as the title says, practical
guides to Linux I have ever read. I consider myself a novice and I come
back to this book over and over again.”

—Albert J. Nguyen

“Thank you for writing a book to help me get away from Windows XP
and to never touch Windows Vista. The book is great; I am learning a lot
of new concepts and commands. Linux is definitely getting easier to use.”

—James Moritz

“I am so impressed by how Mark Sobell can approach a complex topic in
such an understandable manner. His command examples are especially
useful in providing a novice (or even an advanced) administrator with a
cookbook on how to accomplish real-world tasks on Linux. He is truly
an inspired technical writer!”

—George Vish II
Senior Education Consultant
Hewlett-Packard Company

“Overall, I think it’s a great, comprehensive Ubuntu book that’ll be a valu-
able resource for people of all technical levels.”

—John Dong
Ubuntu Forum Council Member
Backports Team Leader

“The JumpStart sections really offer a quick way to get things up and run-
ning, allowing you to dig into the details of the book later.”

—Scott Mann
Aztek Networks

“I would so love to be able to use this book to teach a class about not just
Ubuntu or Linux but about computers in general. It is thorough and well
written with good illustrations that explain important concepts for com-
puter usage.”

—Nathan Eckenrode
New York Local Community Team

“Ubuntu is gaining popularity at the rate alcohol did during Prohibition,
and it’s great to see a well-known author write a book on the latest and
greatest version. Not only does it contain Ubuntu-specific information,
but it also touches on general computer-related topics, which will help
the average computer user to better understand what’s going on in the
background. Great work, Mark!”

—Daniel R. Arfsten
Pro/ENGINEER Drafter/Designer

“I read a lot of Linux technical information every day, but I’m rarely
impressed by tech books. I usually prefer online information sources
instead. Mark Sobell’s books are a notable exception. They’re clearly
written, technically accurate, comprehensive, and actually enjoyable to
read.”

—Matthew Miller
Senior Systems Analyst/Administrator
BU Linux Project
Boston University Office
of Information Technology

“This is well-written, clear, comprehensive information for the Linux user
of any type, whether trying Ubuntu on for the first time and wanting to
know a little about it, or using the book as a very good reference when
doing something more complicated like setting up a server. This book’s
value goes well beyond its purchase price and it’ll make a great addition
to the Linux section of your bookshelf.”

—Linc Fessenden
Host of The LinuxLink TechShow
tllts.org

“The author has done a very good job at clarifying such a detail-oriented
operating system. I have extensive Unix and Windows experience and
this text does an excellent job at bridging the gaps between Linux, Win-
dows, and Unix. I highly recommend this book to both ‘newbs’ and
experienced users. Great job!”

—Mark Polczynski
Information Technology Consultant

“Your text, A Practical Guide to Ubuntu Linux®, Third Edition, is a well
constructed, informative, superbly written text. You deserve an award
for outstanding talent; unfortunately my name is not Pulitzer.”

—Harrison Donnelly
Physician

“When I first started working with Linux just a short ten years or so ago,
it was a little more difficult than now to get going. . . . Now, someone new
to the community has a vast array of resources available on the web, or
if they are inclined to begin with Ubuntu, they can literally find almost
every single thing they will need in the single volume of Mark Sobell’s A
Practical Guide to Ubuntu Linux®.

“I’m sure this sounds a bit like hyperbole. Everything a person would need
to know? Obviously not everything, but this book, weighing in at just
under 1200 pages, covers so much so thoroughly that there won’t be
much left out. From install to admin, networking, security, shell scripting,
package management, and a host of other topics, it is all there. GUI and
command-line tools are covered. There is not really any wasted space or
fluff, just a huge amount of information. There are screen shots when
appropriate but they do not take up an inordinate amount of space. This
book is information-dense.”

—JR Peck
Editor
GeekBook.org

“I have been wanting to make the jump to Linux but did not have the guts
to do so—until I saw your familiarly titled A Practical Guide to Red Hat®

Linux® at the bookstore. I picked up a copy and am eagerly looking for-
ward to regaining my freedom.”

—Carmine Stoffo
Machine and Process Designer
to pharmaceutical industry

“I am currently reading A Practical Guide to Red Hat® Linux® and am
finally understanding the true power of the command line. I am new to
Linux and your book is a treasure.”

—Juan Gonzalez

“Overall, A Practical Guide to Ubuntu Linux® by Mark G. Sobell pro-
vides all of the information a beginner to intermediate user of Linux
would need to be productive. The inclusion of the Live DVD of the Gutsy
Gibbon release of Ubuntu makes it easy for the user to test-drive Linux
without affecting his installed OS. I have no doubts that you will consider
this book money well spent.”

—Ray Lodato
Slashdot contributor
www.slashdot.org

Blank

A Practical Guide to Linux Commands,

Editors, and Shell Programming

THIRD EDITION

Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

®

Excerpts of Chapters From

Blank

125125

E
X
C
E
R
P
T

5Chapter5

Objectives

After reading this chapter you should be able to:

 Describe a simple command

 Understand command-line syntax and run commands
that include options and arguments

 Explain how the shell interprets the command line

 Redirect output of a command to a file, overwriting
the file or appending to it

 Redirect input for a command so it comes from a file

 Connect commands using a pipeline

 Run commands in the background

 Use special characters as wildcards to generate
filenames

 Explain the difference between a stand-alone utility
and a shell builtin

In This Chapter

The Command Line 126

Standard Input and Standard
Output . 133

Redirection 135

Pipelines . 141

Running a Command in the
Background 146

kill: Aborting a Background Job . . . 147

Filename Generation/Pathname
Expansion 148

Builtins . 153

5
The Shell

Blank

Standard Input and Standard Output 135

The Keyboard and Screen as Standard Input and

Standard Output

After you log in, the shell directs standard output of commands you enter to the
device file that represents the terminal (Figure 5-4). Directing output in this manner
causes it to appear on the screen. The shell also directs standard input to come from
the same file, so commands receive as input anything you type on the keyboard.

cat The cat utility provides a good example of the way the keyboard and screen function
as standard input and standard output, respectively. When you run cat, it copies a file
to standard output. Because the shell directs standard output to the screen, cat displays
the file on the screen.

Up to this point cat has taken its input from the filename (argument) you specify on
the command line. When you do not give cat an argument (that is, when you give the
command cat followed immediately by RETURN), cat takes its input from standard
input. Thus, when called without an argument, cat copies standard input to standard
output, one line at a time.

To see how cat works, type cat and press RETURN in response to the shell prompt.
Nothing happens. Enter a line of text and press RETURN. The same line appears just
under the one you entered. The cat utility is working. Because the shell associates
cat’s standard input with the keyboard and cat’s standard output with the screen,
when you type a line of text cat copies the text from standard input (the keyboard)
to standard output (the screen). Figure shows this exchange.

CONTROL-D

signals EOF
The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing
CONTROL-D causes the tty device driver to send an EOF (end of file) signal to cat. This
signal indicates to cat that it has reached the end of standard input and there is no
more text for it to copy. The cat utility then finishes execution and returns control to
the shell, which displays a prompt.

Redirection

The term redirection encompasses the various ways you can cause the shell to alter where
standard input of a command comes from and where standard output goes to. By default,

$ cat
This is a line of text.
This is a line of text.
Cat keeps copying lines of text
Cat keeps copying lines of text
until you press CONTROL-D at the beginning
until you press CONTROL-D at the beginning
of a line.
of a line.
CONTROL-D
$

136 Chapter 5 The Shell

the shell associates standard input and standard output of a command with the keyboard
and the screen. You can cause the shell to redirect standard input or standard output of
any command by associating the input or output with a command or file other than the
device file representing the keyboard or the screen. This section demonstrates how to
redirect input/output from/to text files and utilities.

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a command
to the specified file instead of to the screen (Figure 5-5). The syntax of a command
line that redirects output is

command [arguments] > filename

where command is any executable program (e.g., an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the
shell redirects the output to.

Figure 5-6 uses cat to demonstrate output redirection. This figure contrasts with
Figure , where standard input and standard output are associated with the keyboard
and screen. The input in Figure 5-6 comes from the keyboard. The redirect output
symbol on the command line causes the shell to associate cat’s standard output with
the sample.txt file specified following this symbol.

After giving the command and typing the text shown in Figure 5-6, the sample.txt file
contains the text you entered. You can use cat with an argument of sample.txt to display
this file. The next section shows another way to use cat to display the file.

Figure 5-5 Redirecting standard output

Command

Standard
input

S
h

ell Standard
outputS

he
ll

File

Redirecting output can destroy a file I
caution Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and destroy

its contents. For more information see the tip “Redirecting output can destroy a file II” on
page 139.

Standard Input and Standard Output 137

Figure 5-6 shows that redirecting standard output from cat is a handy way to create
a file without using an editor. The drawback is that once you enter a line and press
RETURN, you cannot edit the text until after you finish creating the file. While you are
entering a line, the erase and kill keys work to delete text on that line. This procedure
is useful for creating short, simple files.

Figure 5-7 shows how to run cat and use the redirect output symbol to catenate (join
one after the other—the derivation of the name of the cat utility) several files into one
larger file. The first three commands display the contents of three files: stationery,
tape, and pens. The next command shows cat with three filenames as arguments.
When you call it with more than one filename, cat copies the files, one at a time, to
standard output. This command redirects standard output to the file supply_orders.
The final cat command shows that supply_orders contains the contents of the three
original files.

Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The
redirect input symbol (<) instructs the shell to redirect a command’s input to come

$ cat > sample.txt
This text is being entered at the keyboard and
cat is copying it to a file.
Press CONTROL-D to indicate the
end of file.
CONTROL-D
$

Figure 5-6 cat with its output redirected

$ cat stationery
2,000 sheets letterhead ordered: October 7
$ cat tape
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
$ cat pens
12 doz. black pens ordered: October 4

$ cat stationery tape pens > supply_orders

$ cat supply_orders
2,000 sheets letterhead ordered: October 7
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
12 doz. black pens ordered: October 4

Figure 5-7 Using cat to catenate files

138 Chapter 5 The Shell

from the specified file instead of from the keyboard (Figure 5-8). The syntax of a
command line that redirects input is

command [arguments] < filename

where command is any executable program (such as an application program or a utility),
arguments are optional arguments, and filename is the name of the ordinary file the shell
redirects the input from.

Figure 5-9 shows cat with its input redirected from the supply_orders file created in
Figure 5-7 and standard output going to the screen. This setup causes cat to display
the supply_orders file on the screen. The system automatically supplies an EOF signal
at the end of an ordinary file.

Utilities that take
input from a file or

standard input

Giving a cat command with input redirected from a file yields the same result as giv-
ing a cat command with the filename as an argument. The cat utility is a member of
a class of utilities that function in this manner. Other members of this class of utilities
include lpr, sort, grep, and Perl. These utilities first examine the command line that
called them. If the command line includes a filename as an argument, the utility takes
its input from the specified file. If no filename argument is present, the utility takes
its input from standard input. It is the utility or program—not the shell or operating
system—that functions in this manner.

Figure 5-8 Redirecting standard input

Command

Standard
outputS

h
el

l

Standard
input

File

S
hell

$ cat < supply_orders
2,000 sheets letterhead ordered: October 7
1 box masking tape ordered: October 14
5 boxes filament tape ordered: October 28
12 doz. black pens ordered: October 4

Figure 5-9 cat with its input redirected

Standard Input and Standard Output 139

noclobber: Prevents Overwriting Files

The shell provides the noclobber feature, which prevents you from overwriting a file
using redirection. Enable this feature by setting noclobber using the command set –o
noclobber. The same command with +o unsets noclobber. Under tcsh use set noclobber
and unset noclobber. With noclobber set, if you redirect output to an existing file, the
shell displays an error message and does not execute the command. Run under bash
and tcsh, the following examples create a file using touch, set noclobber, attempt to
redirect the output from echo to the newly created file, unset noclobber, and perform
the same redirection:

bash $ touch tmp
$ set -o noclobber
$ echo "hi there" > tmp
-bash: tmp: cannot overwrite existing file
$ set +o noclobber
$ echo "hi there" > tmp

tcsh tcsh $ touch tmp
tcsh $ set noclobber
tcsh $ echo "hi there" > tmp
tmp: File exists.
tcsh $ unset noclobber
tcsh $ echo "hi there" > tmp

Redirecting output can destroy a file II
caution Depending on which shell you are using and how the environment is set up, a command such as

the following can yield undesired results:
$ cat orange pear > orange
cat: orange: input file is output file

Although cat displays an error message, the shell destroys the contents of the existing orange file.
The new orange file will have the same contents as pear because the first action the shell takes
when it sees the redirection symbol (>) is to remove the contents of the original orange file. If you
want to catenate two files into one, use cat to put the two files into a temporary file and then use
mv to rename the temporary file:

$ cat orange pear > temp
$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 56)
to the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output
grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message could take
a moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it might take a while to realize that you have destroyed the contents of a.

140 Chapter 5 The Shell

You can override noclobber by putting a pipe symbol (tcsh uses an exclamation point)
after the redirect symbol (>|). In the following example, the user creates a file by redi-
recting the output of date. Next the user sets the noclobber variable and redirects output
to the same file again. The shell displays an error message. Then the user places a pipe
symbol after the redirect symbol, and the shell allows the user to overwrite the file.

$ date > tmp2
$ set -o noclobber
$ date > tmp2
-bash: tmp2: cannot overwrite existing file
$ date >| tmp2

For more information on using noclobber under tcsh, refer to page 397.

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end
of a file, leaving existing information intact. This symbol provides a convenient way
of catenating two files into one. The following commands demonstrate the action of
the append output symbol. The second command accomplishes the catenation
described in the preceding caution box:

$ cat orange
this is orange
$ cat pear >> orange
$ cat orange
this is orange
this is pear

$ date > whoson
$ cat whoson
Wed Mar 27 14:31:18 PST 2013
$ who >> whoson
$ cat whoson
Wed Mar 27 14:31:18 PST 2013
sam tty1 2013-03-27 05:00(:0)
max pts/4 2013-03-27 12:23(:0.0)
max pts/5 2013-03-27 12:33(:0.0)
zach pts/7 2013-03-26 08:45 (172.16.192.1)

Figure 5-10 Redirecting and appending output

Do not trust noclobber
caution Appending output is simpler than the two-step procedure described in the preceding caution box

but you must be careful to include both greater than signs. If you accidentally use only one greater
than sign and the noclobber feature is not set, the shell will overwrite the orange file. Even if you
have the noclobber feature turned on, it is a good idea to keep backup copies of the files you are
manipulating in case you make a mistake.

Although it protects you from overwriting a file using redirection, noclobber does not stop you
from overwriting a file using cp or mv. These utilities include the –i (interactive) option that helps
protect you from this type of mistake by verifying your intentions when you try to overwrite a file.
For more information see the tip “cp can destroy a file” on page 54.

Standard Input and Standard Output 141

The first command displays the contents of the orange file. The second command
appends the contents of the pear file to the orange file. The final command displays
the result.

Figure 5-10 shows how to create a file that contains the date and time (the output from
date), followed by a list of who is logged in (the output from who). The first command
in the example redirects the output from date to the file named whoson. Then cat displays
the file. The next command appends the output from who to the whoson file. Finally cat
displays the file containing the output of both utilities.

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can
redirect output you do not want to keep or see to /dev/null, and the output will
disappear without a trace:

$ echo "hi there" > /dev/null
$

Reading from /dev/null yields a null string. The following command truncates the
file named messages to zero length while preserving the ownership and permissions
of the file:

$ ls -lh messages
-rw-rw-r--. 1 sam pubs 125K 03-16 14:30 messages
$ cat /dev/null > messages
$ ls -lh messages
-rw-rw-r--. 1 sam pubs 0 03-16 14:32 messages

Pipelines

A pipeline consists of one or more commands separated by a pipe symbol (|). The
shell connects standard output (and optionally standard error) of the command pre-
ceding the pipe symbol to standard input of the command following the pipe symbol.
A pipeline has the same effect as redirecting standard output of one command to a
file and then using that file as standard input to another command. A pipeline does
away with separate commands and the intermediate file. The syntax of a pipeline is

command_a [arguments] | command_b [arguments]

The preceding command line uses a pipeline to effect the same result as the following
three commands:

command_a [arguments] > temp
command_b [arguments] < temp
rm temp

In the preceding sequence of commands, the first line redirects standard output
from command_a to an intermediate file named temp. The second line redirects
standard input for command_b to come from temp. The final line deletes temp. The
pipeline syntax is not only easier to type but also is more efficient because it does
not create a temporary file.

Blank

159159

E
X
C
E
R
P
T6Chapter6

Objectives

After reading this chapter you should be able to:

 Use vim to create and edit a file

 View vim online help

 Explain the difference between Command and Input
modes

 Explain the purpose of the Work buffer

 List the commands that open a line above the cursor,
append text to the end of a line, move the cursor to the
first line of the file, and move the cursor to the middle
line of the screen

 Describe Last Line mode and list some commands that
use this mode

 Describe how to set and move the cursor to a marker

 List the commands that move the cursor backward and
forward by characters and words

 Describe how to read a file into the Work buffer

 Explain how to search backward and forward for text
and how to repeat that search

In This Chapter

Tutorial: Using vim to Create
and Edit a File 161

Introduction to vim Features 168

Online Help 168

Command Mode: Moving the
Cursor . 174

Input Mode 178

Command Mode: Deleting and
Changing Text 179

Searching and Substituting 183

Copying, Moving, and
Deleting Text 190

The General-Purpose Buffer 191

Reading and Writing Files 193

The .vimrc Startup File 195

6
The vim Editor

Blank

Searching and Substituting 183

The s command replaces characters only on the current line. If you specify a Repeat
Factor before an s command and this action would replace more characters than are
present on the current line, s changes characters only to the end of the line (same as
C).

Changing Case

The tilde (~) character changes the case of the current character from uppercase to
lowercase, or vice versa. You can precede the tilde with a number to specify the num-
ber of characters you want the command to affect. For example, the command 5~
transposes the next five characters starting with the character under the cursor, but
will not transpose characters past the end of the current line.

Searching and Substituting

Searching for and replacing a character, a string of text, or a string that is matched
by a regular expression is a key feature of any editor. The vim editor provides simple
commands for searching for a character on the current line. It also provides more
complex commands for searching for—and optionally substituting for—single and
multiple occurrences of strings or regular expressions anywhere in the Work buffer.

Searching for a Character

Find (f/F) You can search for and move the cursor to the next occurrence of a specified charac-
ter on the current line using the f (Find) command. Refer to “Moving the Cursor to
a Specific Character” on page 175.

Find (t/T) The next two commands are used in the same manner as the Find commands. The t
command places the cursor on the character before the next occurrence of the spec-
ified character. The T command places the cursor on the character after the previous
occurrence of the specified character.

A semicolon (;) repeats the last f, F, t, or T command.

You can combine these search commands with other commands. For example, the
command d2fq deletes the text from the current character to the second occurrence
of the letter q on the current line.

Command Result

s Substitutes one or more characters for current character

S Substitutes one or more characters for current line

5s Substitutes one or more characters for five characters, starting with current
character

184 Chapter 6 The vim Editor

Searching for a String

Search (/ /?) The vim editor can search backward or forward through the Work buffer to find a
string of text or a string that matches a regular expression (Appendix A). To find the
next occurrence of a string (forward), press the forward slash (/) key, enter the text
you want to find (called the search string), and press RETURN. When you press the slash
key, vim displays a slash on the status line. As you enter the string of text, it is also
displayed on the status line. When you press RETURN, vim searches for the string. If this
search is successful, vim positions the cursor on the first character of the string. If you
use a question mark (?) in place of the forward slash, vim searches for the previous
occurrence of the string. If you need to include a forward slash in a forward search
or a question mark in a backward search, you must quote it by preceding it with a
backslash (\).

Next (n/N) The N and n keys repeat the last search but do not require you to reenter the search
string. The n key repeats the original search exactly, and the N key repeats the search
in the opposite direction of the original search.

If you are searching forward and vim does not find the search string before it gets to
the end of the Work buffer, the editor typically wraps around and continues the
search at the beginning of the Work buffer. During a backward search, vim wraps
around from the beginning of the Work buffer to the end. Also, vim normally per-
forms case-sensitive searches. Refer to “Wrap scan” (page 199) and “Ignore case in
searches” (page 197) for information about how to change these search parameters.

Normal Versus Incremental Searches

When vim performs a normal search (its default behavior), you enter a slash or ques-
tion mark followed by the search string and press RETURN. The vim editor then moves
the cursor to the next or previous occurrence of the string you are searching for.

When vim performs an incremental search, you enter a slash or question mark. As
you enter each character of the search string, vim moves the highlight to the next
or previous occurrence of the string you have entered so far. When the highlight is
on the string you are searching for, you must press RETURN to move the cursor to the
highlighted string. If the string you enter does not match any text, vim does not
highlight anything.

The type of search that vim performs depends on the incsearch parameter (page 197).
Give the command :set incsearch to turn on incremental searching; use noincsearch
to turn it off. When you set the compatible parameter (page 168), vim turns off incre-
mental searching.

Two distinct ways of quoting characters

tip You use CONTROL-V to quote special characters in text that you are entering into a file (page 179).
This section discusses the use of a backslash (\) to quote special characters in a search string.
The two techniques of quoting characters are not interchangeable.

Searching and Substituting 185

Special Characters in Search Strings

Because the search string is a regular expression, some characters take on a special
meaning within the search string. The following paragraphs list some of these char-
acters. See also “Extended Regular Expressions” on page 1017.

The first two items in the following list (^ and $) always have their special meanings
within a search string unless you quote them by preceding them with a backslash (\).
You can turn off the special meanings within a search string for the rest of the items
in the list by setting the nomagic parameter. For more information refer to “Allow
special characters in searches” on page 196.

^ Beginning-of-Line Indicator

When the first character in a search string is a caret (also called a circumflex), it
matches the beginning of a line. For example, the command /^the finds the next line
that begins with the string the.

$ End-of-Line Indicator

A dollar sign matches the end of a line. For example, the command /!$ finds the next
line that ends with an exclamation point and / $ matches the next line that ends with
a SPACE.

. Any-Character Indicator

A period matches any character, anywhere in the search string. For example, the com-
mand /l..e finds line, followed, like, included, all memory, or any other word or
character string that contains an l followed by any two characters and an e. To search
for a period, use a backslash to quote the period (\.).

\> End-of-Word Indicator

This pair of characters matches the end of a word. For example, the command /s\>
finds the next word that ends with an s. Whereas a backslash (\) is typically used to
turn off the special meaning of a character, the character sequence \> has a special
meaning, while > alone does not.

\< Beginning-of-Word Indicator

This pair of characters matches the beginning of a word. For example, the com-
mand /\<The finds the next word that begins with the string The . The beginning-
of-word indicator uses the backslash in the same, atypical way as the end-of-word
indicator.

* Zero or More Occurrences

This character is a modifier that will match zero or more occurrences of the character
immediately preceding it. For example, the command /dis*m will match the string
di followed by zero or more s characters followed by an m. Examples of successful
matches would include dim, or dism, and dissm.

186 Chapter 6 The vim Editor

[] Character-Class Definition

Brackets surrounding two or more characters match any single character located
between the brackets. For example, the command /dis[ck] finds the next occurrence
of either disk or disc.

There are two special characters you can use within a character-class definition. A
caret (^) as the first character following the left bracket defines the character class to
be any except the following characters. A hyphen between two characters indicates
a range of characters. Refer to the examples in Table 6-3.

Substituting One String for Another

A Substitute command combines the effects of a Search command and a Change
command. That is, it searches for a string (regular expression) just as the / command

Table 6-3 Search examples

Search string What it finds

/and Finds the next occurrence of the string and

Examples: sand and standard slander andiron

/ \<and\> Finds the next occurrence of the word and

Example: and

/^The Finds the next line that starts with The

Examples:

The . . .

There . . .

/^[0-9][0-9]) Finds the next line that starts with a two-digit number followed by a right
parenthesis

Examples:

77)...

01)...

15)...

/ \<[adr] Finds the next word that starts with a, d, or r

Examples: apple drive road argument right

/^[A-Za-z] Finds the next line that starts with an uppercase or lowercase letter

Examples:

will not find a line starting with the number 7 . . .

Dear Mr. Jones . . .

in the middle of a sentence like this . . .

Searching and Substituting 187

does, allowing the same special characters discussed in the previous section. When
it finds the string or matches the regular expression, the Substitute command
changes the string or regular expression it matches. The syntax of the Substitute
command is

:[g][address]s/search-string/replacement-string[/option]

As with all commands that begin with a colon, vim executes a Substitute command
from the status line.

The Substitute Address

If you do not specify an address, Substitute searches only the current line. If you use
a single line number as the address, Substitute searches that line. If the address is two
line numbers separated by a comma, Substitute searches those lines and the lines
between them. Refer to “Line numbers” on page 197 if you want vim to display line
numbers. Wherever a line number is allowed in the address, you might also use an
address string enclosed between slashes. The vim editor operates on the next line that
the address string matches. When you precede the first slash of the address string
with the letter g (for global), vim operates on all lines in the file that the address string
matches. (This g is not the same as the one that goes at the end of the Substitute com-
mand to cause multiple replacements on a single line; see “Searching for and
Replacing Strings” on the next page).

Within the address, a period represents the current line, a dollar sign represents the
last line in the Work buffer, and a percent sign represents the entire Work buffer. You
can perform address arithmetic using plus and minus signs. Table 6-4 shows some
examples of addresses.

Table 6-4 Addresses

Address Portion of Work buffer addressed

5 Line 5

77,100 Lines 77 through 100 inclusive

1,. Beginning of Work buffer through current line

.,$ Current line through end of Work buffer

1,$ Entire Work buffer

% Entire Work buffer

/pine/ The next line containing the word pine

g/pine/ All lines containing the word pine

.,.+10 Current line through tenth following line (11 lines in all)

188 Chapter 6 The vim Editor

Searching for and Replacing Strings

An s comes after the address in the command syntax, indicating that this is a Substi-
tute command. A delimiter follows the s, marking the beginning of the search-string.
Although the examples in this book use a forward slash, you can use as a delimiter
any character that is not a letter, number, blank, or backslash. You must use the same
delimiter at the end of the search-string.

Next comes the search-string. It has the same format as the search string in the / com-
mand and can include the same special characters (page 185). (The search-string is
a regular expression; refer to Appendix A for more information.) Another delimiter
marks the end of the search-string and the beginning of the replacement-string.

The replacement-string replaces the text matched by the search-string and is typically
followed by the delimiter character. You can omit the final delimiter when no option
follows the replacement-string; a final delimiter is required if an option is present.

Several characters have special meanings in the search-string, and other characters
have special meanings in the replacement-string. For example, an ampersand (&) in
the replacement-string represents the text that was matched by the search-string. A
backslash in the replacement-string quotes the character that follows it. Refer to
Table 6-5 and Appendix A.

Table 6-5 Search and replace examples

Command Result

:s/bigger/biggest/ Replaces the first occurrence of the string bigger on the current line
with biggest

Example:

bigger biggest

:1,.s/Ch 1/Ch 2/g Replaces every occurrence of the string Ch 1, before or on the
current line, with the string Ch 2

Examples:

Ch 1 Ch 2

Ch 12 Ch 22

:1,$s/ten/10/g Replaces every occurrence of the string ten with the string 10

Examples:

ten 10

often of10

tenant 10ant

:g/chapter/s/ten/10/ Replaces the first occurrence of the string ten with the string 10 on
all lines containing the word chapter

Examples:

chapter ten chapter 10

chapters will often chapters will of10

Searching and Substituting 189

Normally, the Substitute command replaces only the first occurrence of any text that
matches the search-string on a line. If you want a global substitution—that is, if you
want to replace all matching occurrences of text on a line—append the g (global)
option after the delimiter that ends the replacement-string. Another useful option, c
(check), causes vim to ask whether you would like to make the change each time it
finds text that matches the search-string. Pressing y replaces the search-string, q ter-
minates the command, l (last) makes the replacement and quits, a (all) makes all
remaining replacements, and n continues the search without making that
replacement.

The address string need not be the same as the search-string. For example,

:/candle/s/wick/flame/

substitutes flame for the first occurrence of wick on the next line that contains the
string candle. Similarly,

:g/candle/s/wick/flame/

performs the same substitution for the first occurrence of wick on each line of the file
containing the string candle and

:g/candle/s/wick/flame/g

performs the same substitution for all occurrences of wick on each line that contains
the string candle.

If the search-string is the same as the address, you can leave the search-string blank.
For example, the command :/candle/s//lamp/ is equivalent to the command
:/candle/s/candle/lamp/.

Command Result

:%s/\<ten\>/10/g Replaces every occurrence of the word ten with the string 10

Example:

ten 10

:.,.+10s/every/each/g Replaces every occurrence of the string every with the string each
on the current line through the tenth following line

Examples:

every each

everything eachthing

:s/\<short\>/ "&"/ Replaces the word short on the current line with "short" (enclosed
within quotation marks)

Example:

the shortest of the short the shortest of the "short"

Table 6-5 Search and replace examples (continued)

190 Chapter 6 The vim Editor

Miscellaneous Commands

This section describes three commands that do not fit naturally into any other
groups.

Join

Join (J) The J (Join) command joins the line below the current line to the end of the current
line, inserting a SPACE between what was previously two lines and leaving the cursor
on this SPACE. If the current line ends with a period, vim inserts two SPACEs.

You can always “unjoin” (break) a line into two lines by replacing the SPACE or SPACEs
where you want to break the line with a RETURN.

Status

Status (CONTROL-G) The Status command, CONTROL-G, displays the name of the file you are editing, infor-
mation about whether the file has been modified or is a readonly file, the number
of the current line, the total number of lines in the Work buffer, and the percentage
of the Work buffer preceding the current line. You can also use :f to display status
information. Following is a sample status line:

"/usr/share/dict/words" [readonly] line 28501 of 98569 --28%-- col 1

. (Period)

Repeat last
command (.)

The . (period) command repeats the most recent command that made a change. If you
had just given a d2w command (delete the next two words), for example, the . com-
mand would delete the next two words. If you had just inserted text, the . command
would repeat the insertion of the same text. This command is useful if you want to
change some occurrences of a word or phrase in the Work buffer. Search for the first
occurrence of the word (use /) and then make the change you want (use cw). You can
then use n to search for the next occurrence of the word and . to make the same
change to it. If you do not want to make the change, give the n command again to
find the next occurrence.

Copying, Moving, and Deleting Text

The vim editor has a General-Purpose buffer and 26 Named buffers that can hold text
during an editing session. These buffers are useful if you want to move or copy a por-
tion of text to another location in the Work buffer. A combination of the Delete and
Put commands removes text from one location in the Work buffer and places it in
another location in the Work buffer. The Yank and Put commands copy text to
another location in the Work buffer, without changing the original text.

275275

E
X
C
E
R
P
T

8Chapter8

Objectives

After reading this chapter you should be able to:

 Describe the purpose and history of bash

 List the startup files bash runs

 Use three different methods to run a shell script

 Understand the purpose of the PATH variable

 Manage multiple processes using job control

 Redirect error messages to a file

 Use control operators to separate and group
commands

 Create variables and display the values of variables
and parameters

 List and describe common variables found on the
system

 Reference, repeat, and modify previous commands
using history

 Use control characters to edit the command line

 Create, display, and remove aliases and functions

 Customize the bash environment using the set and
shopt builtins

 List the order of command-line expansion

In This Chapter

Startup Files 278

Redirecting Standard Error 282

Writing and Executing a Simple
Shell Script. 284

Job Control. 294

Manipulating the Directory
Stack . 297

Parameters and Variables 300

Locale . 316

Processes 323

History . 326

Reexecuting and Editing
Commands. 328

Functions . 346

Controlling bash: Features and
Options 349

Processing the Command Line. . . 354

8
The Bourne Again

Shell (bash)

276 Chapter 8 The Bourne Again Shell (bash)

This chapter picks up where Chapter 5 left off by focusing on the Bourne Again Shell
(bash). It notes where tcsh implementation of a feature differs from that of bash; if
appropriate, you are directed to the page where the alternative implementation is dis-
cussed. Chapter 10 expands on this chapter, exploring control flow commands and
more advanced aspects of programming the Bourne Again Shell. The bash home page
is at www.gnu.org/software/bash. The bash info page is a complete Bourne Again Shell
reference.

The Bourne Again Shell (bash) and the TC Shell (tcsh) are command interpreters and
high-level programming languages. As command interpreters, they process com-
mands you enter on the command line in response to a prompt. When you use the
shell as a programming language, it processes commands stored in files called shell
scripts. Like other languages, shells have variables and control flow commands (e.g.,
for loops and if statements).

When you use a shell as a command interpreter, you can customize the environment
you work in. You can make the prompt display the name of the working directory,
create a function or an alias for cp that keeps it from overwriting certain kinds of files,
take advantage of keyword variables to change aspects of how the shell works, and
so on. You can also write shell scripts that do your bidding—anything from a one-
line script that stores a long, complex command to a longer script that runs a set of
reports, prints them, and mails you a reminder when the job is done. More complex
shell scripts are themselves programs; they do not just run other programs.
Chapter 10 has some examples of these types of scripts.

Most system shell scripts are written to run under bash (or dash; next page). If you
will ever work in single-user/recovery mode—when you boot the system or perform
system maintenance, administration, or repair work, for example—it is a good idea
to become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 5,
explains how to create and run simple shell scripts, discusses job control, talks
about locale, introduces the basic aspects of shell programming, talks about history
and aliases, and describes command-line expansion. Chapter 9 covers interactive
use of the TC Shell and TC Shell programming, and Chapter 10 presents some more
challenging shell programming problems.

Background

bash Shell The Bourne Again Shell is based on the Bourne Shell (an early UNIX shell; this book
refers to it as the original Bourne Shell to avoid confusion), which was written by
Steve Bourne of AT&T’s Bell Laboratories. Over the years the original Bourne Shell
has been expanded, but it remains the basic shell provided with many commercial
versions of UNIX.

Blank

302 Chapter 8 The Bourne Again Shell (bash)

Whenever you run a command, each argument on the command line becomes the
value of a positional parameter (page 458). Positional parameters enable you to
access command-line arguments, a capability you will often require when you write
shell scripts. The set builtin (page 460) enables you to assign values to positional
parameters.

Other frequently needed shell script values, such as the name of the last command
executed, the number of positional parameters, and the status of the most recently
executed command, are available as special parameters (page 463). You cannot
assign values to special parameters.

User-Created Variables

The first line in the following example declares the variable named person and initializes
it with the value max:

$ person=max
$ echo person
person
$ echo $person
max

Parameter
substitution

Because the echo builtin copies its arguments to standard output, you can use it to dis-
play the values of variables. The second line of the preceding example shows that
person does not represent max. Instead, the string person is echoed as person. The shell
substitutes the value of a variable only when you precede the name of the variable with
a dollar sign ($). Thus the command echo $person displays the value of the variable
person; it does not display $person because the shell does not pass $person to echo as
an argument. Because of the leading $, the shell recognizes that $person is the name of
a variable, substitutes the value of the variable, and passes that value to echo. The echo
builtin displays the value of the variable (not its name), never “knowing” you called it
with the name of a variable.

Quoting the $ You can prevent the shell from substituting the value of a variable by quoting the
leading $. Double quotation marks do not prevent the substitution; single quotation
marks or a backslash (\) do.

$ echo $person
max
$ echo "$person"
max
$ echo '$person'
$person
$ echo \$person
$person

SPACEs Because they do not prevent variable substitution but do turn off the special meanings
of most other characters, double quotation marks are useful when you assign values
to variables and when you use those values. To assign a value that contains SPACEs or

Parameters and Variables 303

TABs to a variable, use double quotation marks around the value. Although double
quotation marks are not required in all cases, using them is a good habit.

$ person="max and zach"
$ echo $person
max and zach
$ person=max and zach
bash: and: command not found

When you reference a variable whose value contains TABs or multiple adjacent SPACEs,
you must use quotation marks to preserve the spacing. If you do not quote the vari-
able, the shell collapses each string of blank characters into a single SPACE before
passing the variable to the utility:

$ person="max and zach"
$ echo $person
max and zach
$ echo "$person"
max and zach

Pathname
expansion in
assignments

When you execute a command with a variable as an argument, the shell replaces the
name of the variable with the value of the variable and passes that value to the pro-
gram being executed. If the value of the variable contains a special character, such as

* or ?, the shell might expand that variable.

The first line in the following sequence of commands assigns the string max* to the
variable memo. All shells interpret special characters as special when you reference
a variable that contains an unquoted special character. In the following example, the
shell expands the value of the memo variable because it is not quoted:

$ memo=max*
$ ls
max.report
max.summary
$ echo $memo
max.report max.summary

Above, the shell expands the $memo variable to max*, expands max* to max.report
and max.summary, and passes these two values to echo. In the next example, the
Bourne Again Shell does not expand the string because bash does not perform path-
name expansion (page 148) when it assigns a value to a variable.

$ echo "$memo"
max*

All shells process a command line in a specific order. Within this order bash (but not
tcsh) expands variables before it interprets commands. In the preceding echo com-
mand line, the double quotation marks quote the asterisk (*) in the expanded value
of $memo and prevent bash from performing pathname expansion on the expanded
memo variable before passing its value to the echo command.

304 Chapter 8 The Bourne Again Shell (bash)

optional
Braces around

variables
The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE},
in which the variable name is enclosed by ${}. The braces insulate the variable name
from adjacent characters. Braces are necessary when catenating a variable value with
a string:

$ PREF=counter
$ WAY=$PREFclockwise
$ FAKE=$PREFfeit
$ echo $WAY $FAKE

$

The preceding example does not work as expected. Only a blank line is output
because although PREFclockwise and PREFfeit are valid variable names, they are not
initialized. By default the shell evaluates an unset variable as an empty (null) string
and displays this value (bash) or generates an error message (tcsh). To achieve the
intent of these statements, refer to the PREF variable using braces:

$ PREF=counter
$ WAY=${PREF}clockwise
$ FAKE=${PREF}feit
$ echo $WAY $FAKE
counterclockwise counterfeit

The Bourne Again Shell refers to command-line arguments using the positional
parameters $1, $2, $3, and so forth up to $9. You must use braces to refer to argu-
ments past the ninth argument: ${10}. The name of the command is held in $0
(page 458).

unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created
exists. To remove the value of a variable but not the variable itself, assign a null value
to the variable. In the following example, set (page 460) displays a list of all variables
and their values; grep extracts the line that shows the value of person.

$ echo $person
zach
$ person=
$ echo $person

$ set | grep person
person=

You can remove a variable using the unset builtin. The following command removes
the variable person:

$ unset person
$ echo $person

$ set | grep person
$

Parameters and Variables 305

Variable Attributes

This section discusses attributes and explains how to assign attributes to variables.

readonly: Makes the Value of a Variable Permanent

You can use the readonly builtin (not in tcsh) to ensure the value of a variable cannot
be changed. The next example declares the variable person to be readonly. You must
assign a value to a variable before you declare it to be readonly; you cannot change
its value after the declaration. When you attempt to change the value of or unset a
readonly variable, the shell displays an error message:

$ person=zach
$ echo $person
zach
$ readonly person
$ person=helen
bash: person: readonly variable
$ unset person
bash: unset: person: cannot unset: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly shell
variables. This list includes keyword variables that are automatically set as readonly as
well as keyword or user-created variables that you have declared as readonly. See the
next page for an example (readonly and declare –r produce the same output).

declare: Lists and Assigns Attributes to Variables

The declare builtin (not in tcsh) lists and sets attributes and values for shell variables.
The typeset builtin (another name for declare) performs the same function but is dep-
recated. Table 8-3 lists five of these attributes.

The following commands declare several variables and set some attributes. The first
line declares person1 and initializes it to max. This command has the same effect with
or without the word declare.

$ declare person1=max
$ declare -r person2=zach
$ declare -rx person3=helen
$ declare -x person4

Table 8-3 Variable attributes (declare)

Attribute Meaning

–a Declares a variable as an array (page 474)

–f Declares a variable to be a function name (page 346)

–i Declares a variable to be of type integer (page 306)

–r Makes a variable readonly; also readonly (above)

–x Makes a variable an environment variable; also export (page 468)

306 Chapter 8 The Bourne Again Shell (bash)

readonly and
export

The readonly and export builtins are synonyms for the commands declare –r and
declare –x, respectively. You can declare a variable without initializing it, as the pre-
ceding declaration of the variable person4 illustrates. This declaration makes person4
an environment variable so it is available to all subshells. Until person4 is initialized,
it has a null value.

You can list the options to declare separately in any order. The following is equivalent
to the preceding declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of – when you want to remove an attribute from a variable.
You cannot remove the readonly attribute. After the following command is given, the
variable person3 is no longer exported, but it is still readonly:

$ declare +x person3

See page 468 for more information on exporting variables.

Listing variable
attributes

Without any arguments or options, declare lists all shell variables. The same list is
output when you run set (page 461) without any arguments.

If you call declare with options but no variable names, the command lists all shell
variables that have the specified attributes set. For example, the command declare –r
displays a list of all readonly variables. This list is the same as that produced by the
readonly command without any arguments. After the declarations in the preceding
example have been given, the results are as follows:

$ declare -r
declare -r BASHOPTS="checkwinsize:cmdhist:expand_aliases: ... "
declare -ir BASHPID
declare -ar BASH_VERSINFO='([0]="4" [1]="2" [2]="24" [3]="1" ... '
declare -ir EUID="500"
declare -ir PPID="1936"
declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand: ... "
declare -ir UID="500"
declare -r person2="zach"
declare -rx person3="helen"

The first seven entries are keyword variables that are automatically declared as
readonly. Some of these variables are stored as integers (–i). The –a option indicates
that BASH_VERSINFO is an array variable; the value of each element of the array
is listed to the right of an equal sign.

Integer By default, the values of variables are stored as strings. When you perform arithmetic
on a string variable, the shell converts the variable into a number, manipulates it, and
then converts it back to a string. A variable with the integer attribute is stored as an
integer. Assign the integer attribute as follows:

$ declare -i COUNT

You can use declare to display integer variables:

Parameters and Variables 307

$ declare -i
declare -ir BASHPID
declare -i COUNT
declare -ir EUID="1000"
declare -i HISTCMD
declare -i LINENO
declare -i MAILCHECK="60"
declare -i OPTIND="1"
...

Keyword Variables

Keyword variables are either inherited or declared and initialized by the shell when
it starts. You can assign values to these variables from the command line or from a
startup file. Typically these variables are environment variables (exported) so they are
available to subshells you start as well as your login shell.

HOME: Your Home Directory

By default, your home directory is the working directory when you log in. Your home
directory is established when your account is set up; under Linux its name is stored
in the /etc/passwd file. Mac OS X uses Open Directory (page 1042) to store this
information.

$ grep sam /etc/passwd
sam:x:500:500:Sam the Great:/home/sam:/bin/bash

When you log in, the shell inherits the pathname of your home directory and assigns it
to the environment variable HOME (tcsh uses home). When you give a cd command
without an argument, cd makes the directory whose name is stored in HOME the
working directory:

$ pwd
/home/max/laptop
$ echo $HOME
/home/max
$ cd
$ pwd
/home/max

This example shows the value of the HOME variable and the effect of the cd builtin.
After you execute cd without an argument, the pathname of the working directory is
the same as the value of HOME: your home directory.

Tilde (~) The shell uses the value of HOME to expand pathnames that use the shorthand tilde
(~) notation (page 89) to denote a user’s home directory. The following example uses
echo to display the value of this shortcut and then uses ls to list the files in Max’s laptop
directory, which is a subdirectory of his home directory.

$ echo ~
/home/max
$ ls ~/laptop
tester count lineup

Blank

563563

E
X
C
E
R
P
T

12Chapter12

Objectives

After reading this chapter you should be able to:

 Give commands using the Python interactive shell

 Write and run a Python program stored in a file

 Demonstrate how to instantiate a list and how to
remove elements from and add elements to a list

 Describe a dictionary and give examples of how it can
be used

 Describe three Python control structures

 Write a Python program that iterates through a list or
dictionary

 Read from and write to a file

 Demonstrate exception processing

 Preserve an object using pickle()

 Write a Python program that uses regular expressions

 Define a function and use it in a program

In This Chapter

Invoking Python 564

Lists . 569

Dictionaries 573

Control Structures 574

Reading from and Writing
to Files . 579

Pickle . 582

Regular Expressions 583

Defining a Function. 584

Using Libraries 585

Lambda Functions 589

List Comprehensions 590

12
The Python

Programming

Language

564 Chapter 12 The Python Programming Language

Introduction

Python is a friendly and flexible programming language in widespread use every-
where from Fortune 500 companies to large-scale open-source projects. Python is
an interpreted language: It translates code into bytecode (page 1059) at runtime
and executes the bytecode within the Python virtual machine. Contrast Python
with the C language, which is a compiled language. C differs from Python in that
the C compiler compiles C source code into architecture-specific machine code.
Python programs are not compiled; you run a Python program the same way you
run a bash or Perl script. Because Python programs are not compiled, they are por-
table between operating systems and architectures. In other words, the same
Python program will run on any system to which the Python virtual machine has
been ported.

Object oriented While not required to use the language, Python supports the object-oriented (OO)
paradigm. It is possible to use Python with little or no understanding of object-
oriented concepts and this chapter covers OO programming minimally while still
explaining Python’s important features.

Libraries Python comes with hundreds of prewritten tools that are organized into logical
libraries. These libraries are accessible to Python programs, but not loaded into
memory at runtime because doing so would significantly increase startup times for
Python programs. Entire libraries (or just individual modules) are instead loaded
into memory when the program requests them.

Version Python is available in two main development branches: Python 2.x and Python 3.x.
This chapter focuses on Python 2.x because the bulk of Python written today uses
2.x. The following commands show that two versions of Python are installed and
that the python command runs Python 2.7.3:

$ whereis python
python: /usr/bin/python /usr/bin/python2.7 /etc/python2.6 /etc/python ...
$ ls -l $(which python)
lrwxrwxrwx 1 root root 9 Apr 17 10:20 /usr/bin/python -> python2.7
$ python -V
Python 2.7.3

Invoking Python

This section discusses the methods you can use to run a Python program.

Interactive shell Most of the examples in this chapter use the Python interactive shell because you can
use it to debug and execute code one line at a time and see the results immediately.
Although this shell is handy for testing, it is not a good choice for running longer,
more complex programs. You start a Python interactive shell by calling the python
utility (just as you would start a bash shell by calling bash). The primary Python

Introduction 565

prompt is >>>. When Python requires more input to complete a command, it displays
its secondary prompt (...).

$ python
Python 2.7.3 (default, Apr 20 2012, 22:39:59)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

While you are using the Python interactive shell, you can give Python a command by
entering the command and pressing RETURN.

>>> print 'Good morning!'
Good morning!

Program file Most of the time a Python program is stored in a text file. Although not required, the
file typically has a filename extension of .py. Use chmod (page 741) to make the file exe-
cutable. As explained on page 287, the #! at the start of the first line of the file instructs
the shell to pass the rest of the file to /usr/bin/python for execution.

$ chmod 755 gm.py
$ cat gm.py
#!/usr/bin/python
print 'Good morning!'

$./gm.py
Good morning!

Implied display

tip Within the Python interactive shell, Python displays output from any command line that does not
have an action. The output is similar to what print would display, although it might not be exactly
the same. The following examples show explicit print and implicit display actions:

>>> print 'Good morning!'
Good morning!
>>> 'Good morning!'
'Good morning!'

>>> print 2 + 2
4
>>> 2 + 2
4

Implied display allows you to display the value of a variable by typing its name:

>>> x = 'Hello'
>>> x
'Hello'

Implied display does not work unless you are running the Python interactive shell (i.e., Python
does not invoke an implicit display action when it is run from a file).

Blank

Reading from and Writing to Files 579

Reading from and Writing to Files

Python allows you to work with files in many ways. This section explains how to read
from and write to text files and how to preserve an object in a file using pickle.

File Input and Output

open() The open() function opens a file and returns a file object called a file handle; it can
open a file in one of several modes (Table 12-3). Opening a file in w (write) mode
truncates the file; use a (append) mode if you want to add to a file. The following
statement opens the file in Max’s home directory named test_file in read mode; the
file handle is named f.

f = open('/home/max/test_file', 'r')

Once the file is opened, you direct input and output using the file handle with one of
the methods listed in Table 12-4. When you are finished working with a file, use
close() to close it and free the resources the open file is using.

Table 12-3 File modes

Mode What it does

r Read only Error if file does not exist.

w Write only File is created if it does not exist. File is truncated if it exists.

r+ Read and write File is created if it does not exist.

a Append File is created if it does not exist.

a+ Append and read File is created if it does not exist.

b Binary Append to r or w to work with binary files.

Table 12-4 File object methods

Method Arguments Returns or action

close() None Closes the file

isatty() None Returns true if the file is connected to a
terminal; false otherwise

read() Maximum number of bytes to
read (optional)

Reads until EOF or specified maximum
number of bytes; returns file as a string

readline() Maximum number of bytes to
read (optional)

Reads until NEWLINE or specified maximum
number of bytes; returns line as a string

readlines() Maximum number of bytes to
read (optional)

Calls readline() repeatedly and returns a list
of lines (iterable)

write(str) String to be written Writes to the file

writelines(strs) List of strings Calls write() repeatedly, once with each item
in the list

580 Chapter 12 The Python Programming Language

The following example reads from /home/max/test_file, which holds three lines. It
opens this file in read mode and assigns the file handle f to the open file. It uses the
readlines() method, which reads the entire file into a list and returns that list.
Because the list is iterable, Python passes to the for control structure one line from
test_file each time through the loop. The for structure assigns the string value of this
line to ln, which print then displays. The strip() method removes whitespace and/or
a NEWLINE from the end of a line. Without strip(), print would output two NEWLINEs: the
one that terminates the line from the file and the one it automatically appends to
each line it outputs. After reading and displaying all lines from the file, the example
closes the file.

>>> f = open('/home/max/test_file', 'r')
>>> for ln in f.readlines():
... print ln.strip()
...
This is the first line
and here is the second line
of this file.
>>> f.close()

The next example opens the same file in append mode and writes a line to it using
write(). The write() method does not append a NEWLINE to the line it outputs, so you
must terminate the string you write to the file with a \n.

>>> f = open('/home/max/test_file','a')
>>> f.write('Extra line!\n')
>>> f.close()

optional In the example that uses for, Python does not call the readlines() method each time
through the for loop. Instead, it reads the file into a list the first time readlines() is
called and then iterates over the list, setting ln to the value of the next line in the list
each time it is called subsequently. It is the same as if you had written

>>> f = open('/home/max/test_file', 'r')
>>> lines = f.readlines()
>>> for ln in lines:
... print ln.strip()

It is more efficient to iterate over the file handle directly because this technique does
not store the file in memory.

>>> f = open('/home/max/test_file', 'r')
>>> for ln in f:
... print ln.strip()

Exception Handling

An exception is an error condition that changes the normal flow of control in a
program. Although you can try to account for every problem your code will need

Lambda Functions 589

$./my_max2.py
random list of numbers: [67, 40, 1, 29, 9, 49, 99, 95, 77, 51]
67 99
largest number is 99
$./my_max2.py
random list of numbers: [53, 33, 76, 35, 71, 13, 75, 58, 74, 50]
53 76
largest number is 76

max() The algorithm used in this example is not the most efficient way of finding the maximum
value in a list. It is more efficient to use the max() builtin function.

>>> from random import sample
>>> max(sample(range(100), 10))
96

optional

Lambda Functions

Python supports Lambda functions—functions that might not be bound to a name.
You might also see them referred to as anonymous functions. Lambda functions are
more restrictive than other functions because they can hold only a single expression.
In its most basic form, Lambda is another syntax for defining a function. In the fol-
lowing example, the object named a is a Lambda function and performs the same task
as the function named add_one:

>>> def add_one(x):
... return x + 1
...
>>> type (add_one)
<type 'function'>

>>> add_one(2)
3

>>> a = lambda x: x + 1
>>> type(a)
<type 'function'>

>>> a(2)
3

map() You can use the Lambda syntax to define a function inline as an argument to a function
such as map() that expects another function as an argument. The syntax of the map()
function is

map(func, seq1[, seq2, ...])

where func is a function that is applied to the sequence of arguments represented by
seq1 (and seq2 ...). Typically the sequences that are arguments to map() and the

590 Chapter 12 The Python Programming Language

object returned by map() are lists. The next example first defines a function named
times_two():

>>> def times_two(x):
... return x * 2
...
>>> times_two(8)
16

Next, the map() function applies times_two() to a list:

>>> map(times_two, [1, 2, 3, 4])
[2, 4, 6, 8]

You can define an inline Lambda function as an argument to map(). In this example
the Lambda function is not bound to a name.

>>> map(lambda x: x * 2, [1, 2, 3, 4])
[2, 4, 6, 8]

List Comprehensions

List comprehensions apply functions to lists. For example, the following code, which
does not use a list comprehension, uses for to iterate over items in a list:

>>> my_list = []
>>> for x in range(10):
... my_list.append(x + 10)
...
>>> my_list
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

You can use a list comprehension to perform the same task neatly and efficiently. The
syntax is similar, but a list comprehension is enclosed within square brackets and the
operation (x + 10) precedes the iteration [for x in range(10)].

>>> my_list = [x + 10 for x in range(10)]
>>> my_list
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

The results when using a for structure and a list comprehension are the same. The
next example uses a list comprehension to fill a list with powers of 2:

>>> potwo = [2**x for x in range(1, 13)]
>>> print potwo
[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

The next list comprehension fills a list with even numbers. The if clause returns values
only if the remainder after dividing a number by 2 is 0 (if x % 2 == 0).

>>> [x for x in range(1,11) if x % 2 == 0]
[2, 4, 6, 8, 10]

711

E
X
C
E
R
P
T

I

PART VI

Command Reference

Blank

sample O 719

sa
m

pl
e
O

sample O
Brief description of what the utility does.

sample [options] arguments

Following the syntax line is a description of the utility. The syntax line shows how to
run the utility from the command line. Options and arguments enclosed in brackets
([]) are not required. Enter words that appear in this italic typeface as is. Words that
you must replace when you enter the command appear in this bold italic typeface.
Words listed as arguments to a command identify single arguments (for example,
source-file) or groups of similar arguments (for example, directory-list). A note here
indicates if the utility runs under Linux or OS X only. O

Arguments This section describes the arguments you can use when you run the utility. The argument,
as shown in the preceding syntax line, is printed in this bold italic typeface.

Options This section lists some of the options you can use with the command. Unless otherwise
specified, you must precede options with one or two hyphens. Most commands accept
a single hyphen before multiple options (page 128). Options in this section are ordered
alphabetically by short (single-hyphen) options. If an option has only a long version
(two hyphens), it is ordered by its long option. Following are some sample options:

––delimiter=dchar
–d dchar

This option includes an argument. The argument is set in a bold italic typeface
in both the heading and the description. You substitute another word (filename,
string of characters, or other value) for any arguments shown in this typeface.
Type characters that are in bold type (such as the ––delimiter and –d) as is.

––make-dirs –m This option has a long and a short version. You can use either option; they are
equivalent. This option description ends with Linux in a box, indicating it is
available under Linux only. Options not followed by Linux or OS X are available
under both operating systems. L

–t (table of contents) This simple option is preceded by a single hyphen and not
followed by arguments. It has no long version. The table of contents appearing
in parentheses at the beginning of the description is a cue, suggestive of what
the option letter stands for. This option description ends with OS X in a box,
indicating it is available under OS X only. Options not followed by Linux or
OS X are available under both operating systems. O

Discussion This optional section describes how to use the utility and identifies any quirks it
might have.

 OS X in an oval indicates this utility runs under Mac OS X only.

720 sample O

Notes This section contains miscellaneous notes—some important and others merely
interesting.

Examples This section contains examples illustrating how to use the utility. This section is a
tutorial, so it takes a more casual tone than the preceding sections of the description.

Blank

732 bzip2

bzip2

bzip2
Compresses or decompresses files

bzip2 [options] [file-list]
bunzip2 [options] [file-list]
bzcat [options] [file-list]
bzip2recover [file]

The bzip2 utility compresses files, bunzip2 restores files compressed using bzip2, and bzcat displays files
compressed with bzip2.

Arguments The file-list is a list of one or more ordinary files (no directories) that are to be com-
pressed or decompressed. If file-list is empty or if the special option – is present, bzip2
reads from standard input. The ––stdout option causes bzip2 to write to standard
output.

Options Under Linux, bzip2, bunzip2, and bzcat accept the common options described on
page 718.

––stdout –c Writes the results of compression or decompression to standard output.

––decompress –d Decompresses a file that was compressed using bzip2. This option with bzip2 is
equivalent to the bunzip2 command.

––fast or
––best

–n Sets the block size when compressing a file. The n is a digit from 1 to 9, where
1 (––fast) generates a block size of 100 kilobytes and 9 (––best) generates a
block size of 900 kilobytes. The default level is 9. The ––fast and ––best options
are provided for compatibility with gzip and do not necessarily yield the fastest
or best compression.

––force –f Forces compression even if a file already exists, has multiple links, or comes
directly from a terminal. The option has a similar effect with bunzip2.

––keep –k Does not delete input files while compressing or decompressing them.

––quiet –q Suppresses warning messages; does display critical messages.

––test –t Verifies the integrity of a compressed file. Displays nothing if the file is OK.

––verbose –v For each file being compressed, displays the name of the file, the compression
ratio, the percentage of space saved, and the sizes of the decompressed and
compressed files.

The Mac OS X version of bzip2 accepts long options

tip Options for bzip2 preceded by a double hyphen (––) work under Mac OS X as well as under Linux.

bzip2 733

Discussion The bzip2 and bunzip2 utilities work similarly to gzip and gunzip; see the discussion of
gzip (page 839) for more information. Normally bzip2 does not overwrite a file; you
must use ––force to overwrite a file during compression or decompression.

Notes The bzip2 home page is bzip.org.

The bzip2 utility does a better job of compressing files than gzip does.

Use the ––bzip2 modifier with tar (page 969) to compress archive files using bzip2.

See page 66 for additional information on and examples of using tar to create and
unpack archives.

bzcat file-list Works like cat except it uses bunzip2 to decompress file-list as it copies files to standard
output.

bzip2recover Attempts to recover a damaged file that was compressed using bzip2.

Examples In the following example, bzip2 compresses a file and gives the resulting file the same
name with a .bz2 filename extension. The –v option displays statistics about the
compression.

$ ls -l
-rw-r--r-- 1 sam sam 737414 04-03 19:05 bigfile
$ bzip2 -v bigfile
 bigfile: 3.926:1, 2.037 bits/byte, 74.53% saved, 737414 in, 187806 out
$ ls -l
-rw-r--r-- 1 sam sam 187806 04-03 19:05 bigfile.bz2

Next touch creates a file with the same name as the original file; bunzip2 refuses to
overwrite the file in the process of decompressing bigfile.bz2. The ––force option
enables bunzip2 to overwrite the file.

$ touch bigfile
$ bunzip2 bigfile.bz2
bunzip2: Output file bigfile already exists.
$ bunzip2 --force bigfile.bz2
$ ls -l
-rw-r--r-- 1 sam sam 737414 04-03 19:05 bigfile

754 cp

cp

cp
Copies files

cp [options] source-file destination-file
cp [options] source-file-list destination-directory

The cp utility copies one or more files. It can either make a copy of a single file (first syntax) or copy
one or more files to a directory (second syntax). With the –R option, cp can copy directory hierarchies.

Arguments The source-file is the pathname of the file that cp makes a copy of. The destination-file
is the pathname cp assigns to the resulting copy of the file.

The source-file-list is a list of one or more pathnames of files that cp makes copies
of. The destination-directory is the pathname of the directory in which cp places the
copied files. With this syntax, cp gives each copied file the same simple filename as
its source-file.

The –R option enables cp to copy directory hierarchies recursively from the
source-file-list into the destination-directory.

Options Under Linux, cp accepts the common options described on page 718. Options
preceded by a double hyphen (––) work under Linux only. Except as noted,
options named with a single letter and preceded by a single hyphen work under
Linux and OS X.

––archive –a Attempts to preserve the owner, group, permissions, access date, and modification
date of source file(s) while copying recursively without dereferencing symbolic
links. Same as –dpR.

––backup –b If copying a file would remove or overwrite an existing file, this option makes
a backup copy of the file that would be overwritten. The backup copy has the
same name as the destination-file with a tilde (~) appended to it. When you use
both ––backup and ––force, cp makes a backup copy when you try to copy a
file over itself. For more backup options, search for Backup options in the core
utils info page. L

–d For each file that is a symbolic link, copies the symbolic link, not the file the
link points to. Also preserves hard links in destination-files that exist between
corresponding source-files. This option is equivalent to ––no-dereference and
––preserve=links. See page 115 for information on dereferencing symbolic
links. L

––force –f When the destination-file exists but cannot be opened for writing, causes cp
to try to remove destination-file before copying source-file. This option is
useful when the user copying a file does not have write permission to an

cp 755

existing destination-file but does have write permission to the directory con-
taining the destination-file. Use this option with –b to back up a destination
file before removing or overwriting it.

–H (partial dereference) For each file that is a symbolic link, copies the file the link
points to, not the symbolic link itself. This option affects files specified on the
command line; it does not affect files found while descending a directory hier-
archy. This option treats files that are not symbolic links normally. Under
OS X, works with –R only. See page 115 for information on dereferencing
symbolic links.

––interactive –i Prompts you whenever cp would overwrite a file. If you respond with a string
that starts with y or Y, cp copies the file. If you enter anything else, cp does not
copy the file.

––dereference –L (dereference) For each file that is a symbolic link, copies the file the link points
to, not the symbolic link itself. This option affects all files and treats files that
are not symbolic links normally. Under OS X, works with –R only. See page 115
for information on dereferencing symbolic links.

––no-dereference –P (no dereference) For each file that is a symbolic link, copies the symbolic link,
not the file the link points to. This option affects all files and treats files that are
not symbolic links normally. Under OS X, works with –R only. See page 115 for
information on dereferencing symbolic links.

––preserve[=attr] –p Creates a destination-file with the same owner, group, permissions, access date,
and modification date as the source-file. The –p option does not take an
argument.

Without attr, ––preserve works as described above. The attr is a comma-
separated list that can include mode (permissions and ACLs), ownership (owner
and group), timestamps (access and modification dates), links (hard links), and
all (all attributes).

––parents Copies a relative pathname to a directory, creating directories as needed. See the
“Examples” section. L

––recursive –R or –r
Recursively copies directory hierarchies including ordinary files. Under Linux,
the ––no-dereference (–d) option is implied: With the –R, –r, or ––recursive
option, cp copies the links (not the files the links point to). The –r and
––recursive options are available under Linux only.

––update –u Copies only when the destination-file does not exist or when it is older than the
source-file (i.e., this option will not overwrite a newer destination file). L

––verbose –v Displays the name of each file as cp copies it.

–X Do not copy extended attributes (page 1044). O

756 cp

Notes Under Linux, cp dereferences symbolic links unless you use one or more of the –R,
–r, ––recursive, –P, –d, or ––no-dereference options. As explained on the previous
page, under Linux the –H option dereferences only symbolic links listed on the
command line. Under Mac OS X, without the –R option, cp always dereferences
symbolic links; with the –R option, cp does not dereference symbolic links (–P is
the default) unless you specify –H or –L.

Many options are available for cp under Linux. See the coreutils info page for a
complete list.

If the destination-file exists before you execute a cp command, cp overwrites the file,
destroying its contents but leaving the access privileges, owner, and group associated
with the file as they were.

If the destination-file does not exist, cp uses the access privileges of the source-file.
The user who copies the file becomes the owner of the destination-file and the user’s
login group becomes the group associated with the destination-file.

Using the –p option (or ––preserve without an argument) causes cp to attempt to set
the owner, group, permissions, access date, and modification date to match those of
the source-file.

Unlike with the ln utility (page 856), the destination-file that cp creates is independent
of its source-file.

Under OS X version 10.4 and above, cp copies extended attributes (page 1044). The
–X option causes cp not to copy extended attributes.

Examples The first command makes a copy of the file letter in the working directory. The name
of the copy is letter.sav.

$ cp letter letter.sav

The next command copies all files with a filename extension of .c to the archives
directory, which is a subdirectory of the working directory. Each copied file retains
its simple filename but has a new absolute pathname. The –p (––preserve) option
causes the copied files in archives to have the same owner, group, permissions, access
date, and modification date as the source files.

$ cp -p *.c archives

The next example copies memo from Sam’s home directory to the working directory:

$ cp ~sam/memo .

The next example runs under Linux and uses the ––parents option to copy the file
memo/thursday/max to the dir directory as dir/memo/thursday/max. The find utility
shows the newly created directory hierarchy.

cp 757

$ cp --parents memo/thursday/max dir
$ find dir
dir
dir/memo
dir/memo/thursday
dir/memo/thursday/max

The following command copies the files named memo and letter into another directory.
The copies have the same simple filenames as the source files (memo and letter) but
have different absolute pathnames. The absolute pathnames of the copied files are
/home/sam/memo and /home/sam/letter, respectively.

$ cp memo letter /home/sam

The final command demonstrates one use of the –f (––force) option. Max owns the
working directory and tries unsuccessfully to copy one over another file (me) that he
does not have write permission for. Because he has write permission to the directory
that holds me, Max can remove the file but cannot write to it. The –f (––force) option
unlinks, or removes, me and then copies one to the new file named me.

$ ls -ld
drwxrwxr-x 2 max max 4096 10-16 22:55 .
$ ls -l
-rw-r--r-- 1 root root 3555 10-16 22:54 me
-rw-rw-r-- 1 max max 1222 10-16 22:55 one
$ cp one me
cp: cannot create regular file 'me': Permission denied
$ cp -f one me
$ ls -l
-rw-r--r-- 1 max max 1222 10-16 22:58 me
-rw-rw-r-- 1 max max 1222 10-16 22:55 one

If Max had used the –b (––backup) option in addition to –f (––force), cp would have
created a backup of me named me~. Refer to “Directory Access Permissions” on
page 103 for more information.

766 cut

cut

cut
Selects characters or fields from input lines

cut [options] [file-list]

The cut utility selects characters or fields from lines of input and writes them to standard output. Char-
acter and field numbering start with 1.

Arguments The file-list is a list of ordinary files. If you do not specify an argument or if you specify
a hyphen (–) in place of a filename, cut reads from standard input.

Options Under Linux, cut accepts the common options described on page 718. Options
preceded by a double hyphen (––) work under Linux only. Options named with
a single letter and preceded by a single hyphen work under Linux and OS X.

––characters=clist
–c clist

Selects the characters given by the column numbers in clist. The value of clist is
one or more comma-separated column numbers or column ranges. A range is
specified by two column numbers separated by a hyphen. A range of –n means
columns 1 through n; n– means columns n through the end of the line.

––delimiter=dchar
–d dchar

Specifies dchar as the input field delimiter. Also specifies dchar as the output
field delimiter unless you use the ––output-delimiter option. The default
delimiter is a TAB character. Quote dchar as necessary to protect it from shell
expansion.

––fields=flist –f flist
Selects the fields specified in flist. The value of flist is one or more comma-
separated field numbers or field ranges. A range is specified by two field numbers
separated by a hyphen. A range of –n means fields 1 through n; n– means fields
n through the last field. The field delimiter is a TAB character unless you use the
–d (––delimiter) option to change it.

––output-delimiter=ochar
Specifies ochar as the output field delimiter. The default delimiter is the TAB

character. You can specify a different delimiter by using the ––delimiter
option. Quote ochar as necessary to protect it from shell expansion.

--only-delimited –s Copies only lines containing delimiters. Without this option, cut copies—but
does not modify—lines that do not contain delimiters. Works only with the –d
(––delimiter) option.

cut 767

Notes Although limited in functionality, cut is easy to learn and use and is a good choice
when columns and fields can be selected without using pattern matching. Sometimes
cut is used with paste (page 905).

Examples For the next two examples, assume that an ls –l command produces the following
output:

$ ls -l
total 2944
-rwxr-xr-x 1 zach pubs 259 02-01 00:12 countout
-rw-rw-r-- 1 zach pubs 9453 02-04 23:17 headers
-rw-rw-r-- 1 zach pubs 1474828 01-14 14:15 memo
-rw-rw-r-- 1 zach pubs 1474828 01-14 14:33 memos_save
-rw-rw-r-- 1 zach pubs 7134 02-04 23:18 tmp1
-rw-rw-r-- 1 zach pubs 4770 02-04 23:26 tmp2
-rw-rw-r-- 1 zach pubs 13580 11-07 08:01 typescript

The following command outputs the permissions of the files in the working directory.
The cut utility with the –c option selects characters 2 through 10 from each input line.
The characters in this range are written to standard output.

$ ls -l | cut -c2-10
otal 2944
rwxr-xr-x
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--
rw-rw-r--

The next command outputs the size and name of each file in the working directory.
The –f option selects the fifth and ninth fields from the input lines. The –d option tells
cut to use SPACEs, not TABs, as delimiters. The tr utility (page 987) with the –s option
changes sequences of more than one SPACE character into a single SPACE; otherwise, cut
counts the extra SPACE characters as separate fields.

$ ls -l | tr -s ' ' ' ' | cut -f5,9 -d' '

259 countout
9453 headers
1474828 memo
1474828 memos_save
7134 tmp1
4770 tmp2
13580 typescript

The last example displays a list of full names as stored in the fifth field of the
/etc/passwd file. The –d option specifies that the colon character be used as the field
delimiter. Although this example works under Mac OS X, /etc/passwd does not

768 cut

contain information about most users; see “Open Directory” on page 1042 for
more information.

$ cat /etc/passwd
root:x:0:0:Root:/:/bin/sh
sam:x:401:50:Sam the Great:/home/sam:/bin/zsh
max:x:402:50:Max Wild:/home/max:/bin/bash
zach:x:504:500:Zach Brill:/home/zach:/bin/tcsh
hls:x:505:500:Helen Simpson:/home/hls:/bin/bash

$ cut -d: -f5 /etc/passwd
Root
Sam the Great
Max Wild
Zach Brill
Helen Simpson

ditto O 785

di
tt

o
O

ditto O
Copies files and creates and unpacks archives

ditto [options] source-file destination-file
ditto [options] source-file-list destination-directory
ditto –c [options] source-directory destination-archive
ditto –x [options] source-archive-list destination-directory

The ditto utility copies files and their ownership, timestamps, and other attributes, including extended
attributes (page 1044). It can copy to and from cpio and zip archive files, as well as copy ordinary files
and directories. The ditto utility is available under OS X only. O

Arguments The source-file is the pathname of the file that ditto is to make a copy of. The
destination-file is the pathname that ditto assigns to the resulting copy of the file.

The source-file-list specifies one or more pathnames of files and directories that ditto
makes copies of. The destination-directory is the pathname of the directory that
ditto copies the files and directories into. When you specify a destination-directory,
ditto gives each of the copied files the same simple filename as its source-file.

The source-directory is a single directory that ditto copies into the destination-archive.
The resulting archive holds copies of the contents of source-directory, but not the
directory itself.

The source-archive-list specifies one or more pathnames of archives that ditto extracts
into destination-directory.

Using a hyphen (–) in place of a filename or a directory name causes ditto to read from
standard input or write to standard output instead of reading from or writing to that
file or directory.

Options You cannot use the –c and –x options together.

–c (create archive) Creates an archive file.

––help Displays a help message.

–k (pkzip) Uses the zip format, instead of the default cpio (page 758) format, to create
or extract archives. For more information on zip, see the tip on page 65.

––norsrc (no resource) Ignores extended attributes. This option causes ditto to copy only
data forks (the default behavior under Mac OS X 10.3 and earlier).

––rsrc (resource) Copies extended attributes, including resource forks (the default
behavior under Mac OS X 10.4 and above). Also –rsrc and –rsrcFork.

–V (very verbose) Sends a line to standard error for each file, symbolic link, and
device node copied by ditto.

–v (verbose) Sends a line to standard error for each directory copied by ditto.

786 ditto O

–X (exclude) Prevents ditto from searching directories in filesystems other than the
filesystems that hold the files it was explicitly told to copy.

–x (extract archive) Extracts files from an archive file.

–z (compress) Uses gzip (page 838) or gunzip to compress or decompress cpio
archives.

Notes The ditto utility does not copy the locked attribute flag (page 1046). The utility also
does not copy ACLs.

By default ditto creates and reads archives (page 1055) in the cpio (page 758) format.

The ditto utility cannot list the contents of archive files; it can only create or extract
files from archives. Use pax or cpio to list the contents of cpio archives, and use unzip
with the –l option to list the contents of zip files.

Examples The following examples show three ways to back up a user’s home directory, including
extended attributes (except as mentioned in “Notes”), while preserving timestamps and
permissions. The first example copies Zach’s home directory to the volume (filesystem)
named Backups; the copy is a new directory named zach.0228:

$ ditto /Users/zach /Volumes/Backups/zach.0228

The next example copies Zach’s home directory into a single cpio-format archive file
on the volume named Backups:

$ ditto -c /Users/zach /Volumes/Backups/zach.0228.cpio

The next example copies Zach’s home directory into a zip archive:

$ ditto -c -k /Users/zach /Volumes/Backups/zach.0228.zip

Each of the next three examples restores the corresponding backup archive into
Zach’s home directory, overwriting any files that are already there:

$ ditto /Volumes/Backups/zach.0228 /Users/zach
$ ditto -x /Volumes/Backups/zach.0228.cpio /Users/zach
$ ditto -x -k /Volumes/Backups/zach.0228.zip /Users/zach

The following example copies the Scripts directory to a directory named ScriptsBackups
on the remote host plum. It uses an argument of a hyphen in place of source-directory
locally to write to standard output and in place of destination-directory on the remote
system to read from standard input:

$ ditto -c Scripts - | ssh plum ditto -x - ScriptsBackups

The final example copies the local startup disk (the root filesystem) to the volume
named Backups.root. Because some of the files can be read only by root, the script
must be run by a user with root privileges. The –X option keeps ditto from trying to
copy other volumes (filesystems) that are mounted under /.

ditto -X / /Volumes/Backups.root

tr 987

tr

tr
Replaces specified characters

tr [options] string1 [string2]

The tr utility reads standard input and, for each input character, either maps it to an alternate character,
deletes the character, or leaves the character as is. This utility reads from standard input and writes to
standard output.

Arguments The tr utility is typically used with two arguments, string1 and string2. The position of
each character in the two strings is important: Each time tr finds a character from string1
in its input, it replaces that character with the corresponding character from string2.

With one argument, string1, and the –d (––delete) option, tr deletes the characters
specified in string1. The option –s (––squeeze-repeats) replaces multiple sequential
occurrences of characters in string1 with single occurrences (for example, abbc
becomes abc).

Ranges
A range of characters is similar in function to a character class within a regular
expression (page 1013). GNU tr does not support ranges (character classes) enclosed
within brackets. You can specify a range of characters by following the character that
appears earlier in the collating sequence with a hyphen and the character that comes
later in the collating sequence. For example, 1–6 expands to 123456. Although the
range A–Z expands as you would expect in ASCII, this approach does not work when
you use the EBCDIC collating sequence, as these characters are not sequential in
EBCDIC. See “Character Classes” for a solution to this issue.

Character Classes
A tr character class is not the same as the character class described elsewhere in this
book. (GNU documentation uses the term list operator for what this book calls a
character class.) You specify a character class as '[:class:]', where class is one of the
character classes from Table VI-35. You must specify a character class in string1 (and
not string2) unless you are performing case conversion (see the “Examples” section)
or you use the –d and –s options together.

Table VI-35 Character classes

Class Meaning

alnum Letters and digits

alpha Letters

blank Whitespace

988 tr

Options Options preceded by a double hyphen (––) work under Linux only. Except as noted,
options named with a single letter and preceded by a single hyphen work under Linux
and OS X.

––complement –c Complements string1, causing tr to match all characters except those in string1.

––delete –d Deletes characters that match those specified in string1. If you use this option
with the –s (––squeeze-repeats) option, you must specify both string1 and
string2 (see “Notes”).

––help Summarizes how to use tr, including the special symbols you can use in string1
and string2. L

––squeeze-repeats –s Replaces multiple sequential occurrences of a character in string1 with a single
occurrence of the character when you call tr with only one string argument. If
you use both string1 and string2, the tr utility first translates the characters in
string1 to those in string2; it then replaces multiple sequential occurrences of a
character in string2 with a single occurrence of the character.

––truncate-set1 –t Truncates string1 so it is the same length as string2 before processing input. L

Notes When string1 is longer than string2, the initial portion of string1 (equal in length to
string2) is used in the translation. When string1 is shorter than string2, tr repeats the
last character of string1 to extend string1 to the length of string2. In this case tr
departs from the POSIX standard, which does not define a result.

If you use the –d (––delete) and –s (––squeeze-repeats) options at the same time, tr
first deletes the characters in string1 and then replaces multiple sequential occur-
rences of a character in string2 with a single occurrence of the character.

Class Meaning

cntrl CONTROL characters

digit Digits

graph Printable characters but not SPACEs

lower Lowercase letters

print Printable characters including SPACEs

punct Punctuation characters

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

Table VI-35 Character classes (continued)

tr 989

Examples You can use a hyphen to represent a range of characters in string1 or string2. The
two command lines in the following example produce the same result:

$ echo abcdef | tr 'abcdef' 'xyzabc'
xyzabc
$ echo abcdef | tr 'a-f' 'x-za-c'
xyzabc

The next example demonstrates a popular method for disguising text, often called
ROT13 (rotate 13) because it replaces the first letter of the alphabet with the thir-
teenth, the second with the fourteenth, and so forth. The first line ends with a pipe
symbol that implicitly continues the line (see the optional section on page 144) and
causes bash to start the next line with a secondary prompt (page 311).

$ echo The punchline of the joke is ... |
> tr 'A-M N-Z a-m n-z' 'N-Z A-M n-z a-m'
Gur chapuyvar bs gur wbxr vf ...

To make the text intelligible again, reverse the order of the arguments to tr:

$ echo Gur chapuyvar bs gur wbxr vf ... |
> tr 'N-Z A-M n-z a-m' 'A-M N-Z a-m n-z'
The punchline of the joke is ...

The ––delete option causes tr to delete selected characters:

$ echo If you can read this, you can spot the missing vowels! |
> tr --delete 'aeiou'
If y cn rd ths, y cn spt th mssng vwls!

In the following example, tr replaces characters and reduces pairs of identical characters
to single characters:

$ echo tennessee | tr -s 'tnse' 'srne'
serene

The next example replaces each sequence of nonalphabetic characters (the complement
of all the alphabetic characters as specified by the character class alpha) in the file
draft1 with a single NEWLINE character. The output is a list of words, one per line.

$ tr -c -s '[:alpha:]' '\n' < draft1

The next example uses character classes to upshift the string hi there:

$ echo hi there | tr '[:lower:]' '[:upper:]'
HI THERE

	CR3.sample
	99.cmdrefa
	99.cmdrefb
	99.cmdrefc
	99.cmdrefd
	99.cmdrefe
	99.cmdreff

